Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(1+2i\right)i+\left(\frac{1-i}{1+i}\right)^{3}
Calculate i to the power of 5 and get i.
-2+i+\left(\frac{1-i}{1+i}\right)^{3}
Multiply 1+2i and i to get -2+i.
-2+i+\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3}
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
-2+i+\left(\frac{-2i}{2}\right)^{3}
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-2+i+\left(-i\right)^{3}
Divide -2i by 2 to get -i.
-2+i+i
Calculate -i to the power of 3 and get i.
-2+2i
Add -2+i and i to get -2+2i.
Re(\left(1+2i\right)i+\left(\frac{1-i}{1+i}\right)^{3})
Calculate i to the power of 5 and get i.
Re(-2+i+\left(\frac{1-i}{1+i}\right)^{3})
Multiply 1+2i and i to get -2+i.
Re(-2+i+\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(-2+i+\left(\frac{-2i}{2}\right)^{3})
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-2+i+\left(-i\right)^{3})
Divide -2i by 2 to get -i.
Re(-2+i+i)
Calculate -i to the power of 3 and get i.
Re(-2+2i)
Add -2+i and i to get -2+2i.
-2
The real part of -2+2i is -2.