( \lambda ^ { 3 } - a \lambda ^ { 2 } + 24 \lambda - 16 = 0
Solve for a
a=\frac{\lambda ^{3}+24\lambda -16}{\lambda ^{2}}
\lambda \neq 0
Quiz
Linear Equation
5 problems similar to:
( \lambda ^ { 3 } - a \lambda ^ { 2 } + 24 \lambda - 16 = 0
Share
Copied to clipboard
\lambda ^{3}-a\lambda ^{2}-16=-24\lambda
Subtract 24\lambda from both sides. Anything subtracted from zero gives its negation.
\lambda ^{3}-a\lambda ^{2}=-24\lambda +16
Add 16 to both sides.
-a\lambda ^{2}=-24\lambda +16-\lambda ^{3}
Subtract \lambda ^{3} from both sides.
\left(-\lambda ^{2}\right)a=16-24\lambda -\lambda ^{3}
The equation is in standard form.
\frac{\left(-\lambda ^{2}\right)a}{-\lambda ^{2}}=\frac{16-24\lambda -\lambda ^{3}}{-\lambda ^{2}}
Divide both sides by -\lambda ^{2}.
a=\frac{16-24\lambda -\lambda ^{3}}{-\lambda ^{2}}
Dividing by -\lambda ^{2} undoes the multiplication by -\lambda ^{2}.
a=\lambda +\frac{24\lambda -16}{\lambda ^{2}}
Divide -24\lambda +16-\lambda ^{3} by -\lambda ^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}