Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for y (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\lambda ^{2}x+x+\left(\lambda -1\right)y-3\lambda ^{2}+\lambda -4=0
Use the distributive property to multiply \lambda ^{2}+1 by x.
\lambda ^{2}x+x+\lambda y-y-3\lambda ^{2}+\lambda -4=0
Use the distributive property to multiply \lambda -1 by y.
\lambda ^{2}x+x-y-3\lambda ^{2}+\lambda -4=-\lambda y
Subtract \lambda y from both sides. Anything subtracted from zero gives its negation.
\lambda ^{2}x+x-3\lambda ^{2}+\lambda -4=-\lambda y+y
Add y to both sides.
\lambda ^{2}x+x+\lambda -4=-\lambda y+y+3\lambda ^{2}
Add 3\lambda ^{2} to both sides.
\lambda ^{2}x+x-4=-\lambda y+y+3\lambda ^{2}-\lambda
Subtract \lambda from both sides.
\lambda ^{2}x+x=-\lambda y+y+3\lambda ^{2}-\lambda +4
Add 4 to both sides.
x\lambda ^{2}+x=-y\lambda +y+3\lambda ^{2}-\lambda +4
Reorder the terms.
\left(\lambda ^{2}+1\right)x=-y\lambda +y+3\lambda ^{2}-\lambda +4
Combine all terms containing x.
\left(\lambda ^{2}+1\right)x=4-\lambda +3\lambda ^{2}+y-y\lambda
The equation is in standard form.
\frac{\left(\lambda ^{2}+1\right)x}{\lambda ^{2}+1}=\frac{4-\lambda +3\lambda ^{2}+y-y\lambda }{\lambda ^{2}+1}
Divide both sides by \lambda ^{2}+1.
x=\frac{4-\lambda +3\lambda ^{2}+y-y\lambda }{\lambda ^{2}+1}
Dividing by \lambda ^{2}+1 undoes the multiplication by \lambda ^{2}+1.
\lambda ^{2}x+x+\left(\lambda -1\right)y-3\lambda ^{2}+\lambda -4=0
Use the distributive property to multiply \lambda ^{2}+1 by x.
\lambda ^{2}x+x+\lambda y-y-3\lambda ^{2}+\lambda -4=0
Use the distributive property to multiply \lambda -1 by y.
x+\lambda y-y-3\lambda ^{2}+\lambda -4=-\lambda ^{2}x
Subtract \lambda ^{2}x from both sides. Anything subtracted from zero gives its negation.
\lambda y-y-3\lambda ^{2}+\lambda -4=-\lambda ^{2}x-x
Subtract x from both sides.
\lambda y-y+\lambda -4=-\lambda ^{2}x-x+3\lambda ^{2}
Add 3\lambda ^{2} to both sides.
\lambda y-y-4=-\lambda ^{2}x-x+3\lambda ^{2}-\lambda
Subtract \lambda from both sides.
\lambda y-y=-\lambda ^{2}x-x+3\lambda ^{2}-\lambda +4
Add 4 to both sides.
y\lambda -y=-x\lambda ^{2}-x+3\lambda ^{2}-\lambda +4
Reorder the terms.
\left(\lambda -1\right)y=-x\lambda ^{2}-x+3\lambda ^{2}-\lambda +4
Combine all terms containing y.
\left(\lambda -1\right)y=4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}
The equation is in standard form.
\frac{\left(\lambda -1\right)y}{\lambda -1}=\frac{4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}}{\lambda -1}
Divide both sides by \lambda -1.
y=\frac{4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}}{\lambda -1}
Dividing by \lambda -1 undoes the multiplication by \lambda -1.
\lambda ^{2}x+x+\left(\lambda -1\right)y-3\lambda ^{2}+\lambda -4=0
Use the distributive property to multiply \lambda ^{2}+1 by x.
\lambda ^{2}x+x+\lambda y-y-3\lambda ^{2}+\lambda -4=0
Use the distributive property to multiply \lambda -1 by y.
\lambda ^{2}x+x-y-3\lambda ^{2}+\lambda -4=-\lambda y
Subtract \lambda y from both sides. Anything subtracted from zero gives its negation.
\lambda ^{2}x+x-3\lambda ^{2}+\lambda -4=-\lambda y+y
Add y to both sides.
\lambda ^{2}x+x+\lambda -4=-\lambda y+y+3\lambda ^{2}
Add 3\lambda ^{2} to both sides.
\lambda ^{2}x+x-4=-\lambda y+y+3\lambda ^{2}-\lambda
Subtract \lambda from both sides.
\lambda ^{2}x+x=-\lambda y+y+3\lambda ^{2}-\lambda +4
Add 4 to both sides.
x\lambda ^{2}+x=-y\lambda +y+3\lambda ^{2}-\lambda +4
Reorder the terms.
\left(\lambda ^{2}+1\right)x=-y\lambda +y+3\lambda ^{2}-\lambda +4
Combine all terms containing x.
\left(\lambda ^{2}+1\right)x=4-\lambda +3\lambda ^{2}+y-y\lambda
The equation is in standard form.
\frac{\left(\lambda ^{2}+1\right)x}{\lambda ^{2}+1}=\frac{4-\lambda +3\lambda ^{2}+y-y\lambda }{\lambda ^{2}+1}
Divide both sides by \lambda ^{2}+1.
x=\frac{4-\lambda +3\lambda ^{2}+y-y\lambda }{\lambda ^{2}+1}
Dividing by \lambda ^{2}+1 undoes the multiplication by \lambda ^{2}+1.
\lambda ^{2}x+x+\left(\lambda -1\right)y-3\lambda ^{2}+\lambda -4=0
Use the distributive property to multiply \lambda ^{2}+1 by x.
\lambda ^{2}x+x+\lambda y-y-3\lambda ^{2}+\lambda -4=0
Use the distributive property to multiply \lambda -1 by y.
x+\lambda y-y-3\lambda ^{2}+\lambda -4=-\lambda ^{2}x
Subtract \lambda ^{2}x from both sides. Anything subtracted from zero gives its negation.
\lambda y-y-3\lambda ^{2}+\lambda -4=-\lambda ^{2}x-x
Subtract x from both sides.
\lambda y-y+\lambda -4=-\lambda ^{2}x-x+3\lambda ^{2}
Add 3\lambda ^{2} to both sides.
\lambda y-y-4=-\lambda ^{2}x-x+3\lambda ^{2}-\lambda
Subtract \lambda from both sides.
\lambda y-y=-\lambda ^{2}x-x+3\lambda ^{2}-\lambda +4
Add 4 to both sides.
y\lambda -y=-x\lambda ^{2}-x+3\lambda ^{2}-\lambda +4
Reorder the terms.
\left(\lambda -1\right)y=-x\lambda ^{2}-x+3\lambda ^{2}-\lambda +4
Combine all terms containing y.
\left(\lambda -1\right)y=4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}
The equation is in standard form.
\frac{\left(\lambda -1\right)y}{\lambda -1}=\frac{4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}}{\lambda -1}
Divide both sides by \lambda -1.
y=\frac{4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}}{\lambda -1}
Dividing by \lambda -1 undoes the multiplication by \lambda -1.