Solve for u
u=-\frac{6+5\lambda +X+X\lambda -X^{2}}{X+5}
X\neq -5
Solve for X
X=\frac{-\sqrt{u^{2}+2u\lambda +22u+\lambda ^{2}+22\lambda +25}+u+\lambda +1}{2}
X=\frac{\sqrt{u^{2}+2u\lambda +22u+\lambda ^{2}+22\lambda +25}+u+\lambda +1}{2}\text{, }\lambda \leq -u-4\sqrt{6}-11\text{ or }\lambda \geq -u+4\sqrt{6}-11
Share
Copied to clipboard
\lambda X+5\lambda +uX+5u=\left(X-3\right)\left(X+2\right)
Use the distributive property to multiply \lambda +u by X+5.
\lambda X+5\lambda +uX+5u=X^{2}-X-6
Use the distributive property to multiply X-3 by X+2 and combine like terms.
5\lambda +uX+5u=X^{2}-X-6-\lambda X
Subtract \lambda X from both sides.
uX+5u=X^{2}-X-6-\lambda X-5\lambda
Subtract 5\lambda from both sides.
\left(X+5\right)u=X^{2}-X-6-\lambda X-5\lambda
Combine all terms containing u.
\left(X+5\right)u=X^{2}-X\lambda -X-5\lambda -6
The equation is in standard form.
\frac{\left(X+5\right)u}{X+5}=\frac{X^{2}-X\lambda -X-5\lambda -6}{X+5}
Divide both sides by X+5.
u=\frac{X^{2}-X\lambda -X-5\lambda -6}{X+5}
Dividing by X+5 undoes the multiplication by X+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}