Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x-2}{x+2}+\frac{8x}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}}
Factor x^{2}-4.
\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{8x}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{x-2}{x+2} times \frac{x-2}{x-2}.
\frac{\frac{\left(x-2\right)\left(x-2\right)+8x}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}}
Since \frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{8x}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x-2x+4+8x}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}}
Do the multiplications in \left(x-2\right)\left(x-2\right)+8x.
\frac{\frac{x^{2}+4x+4}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}}
Combine like terms in x^{2}-2x-2x+4+8x.
\frac{\frac{\left(x+2\right)^{2}}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}}
Factor the expressions that are not already factored in \frac{x^{2}+4x+4}{\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x+2}{x-2}}{\frac{x+2}{x^{2}-2x}}
Cancel out x+2 in both numerator and denominator.
\frac{\left(x+2\right)\left(x^{2}-2x\right)}{\left(x-2\right)\left(x+2\right)}
Divide \frac{x+2}{x-2} by \frac{x+2}{x^{2}-2x} by multiplying \frac{x+2}{x-2} by the reciprocal of \frac{x+2}{x^{2}-2x}.
\frac{x^{2}-2x}{x-2}
Cancel out x+2 in both numerator and denominator.
\frac{x\left(x-2\right)}{x-2}
Factor the expressions that are not already factored.
x
Cancel out x-2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x-2}{x+2}+\frac{8x}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}})
Factor x^{2}-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{8x}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{x-2}{x+2} times \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(x-2\right)\left(x-2\right)+8x}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}})
Since \frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{8x}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}-2x-2x+4+8x}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}})
Do the multiplications in \left(x-2\right)\left(x-2\right)+8x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}+4x+4}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}})
Combine like terms in x^{2}-2x-2x+4+8x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(x+2\right)^{2}}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2}{x^{2}-2x}})
Factor the expressions that are not already factored in \frac{x^{2}+4x+4}{\left(x-2\right)\left(x+2\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x+2}{x-2}}{\frac{x+2}{x^{2}-2x}})
Cancel out x+2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x^{2}-2x\right)}{\left(x-2\right)\left(x+2\right)})
Divide \frac{x+2}{x-2} by \frac{x+2}{x^{2}-2x} by multiplying \frac{x+2}{x-2} by the reciprocal of \frac{x+2}{x^{2}-2x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x}{x-2})
Cancel out x+2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-2\right)}{x-2})
Factor the expressions that are not already factored in \frac{x^{2}-2x}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Cancel out x-2 in both numerator and denominator.
x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
x^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.