( \frac{ x-2 }{ 4 } - \frac{ x+2 }{ 2 } =(- \frac{ 1 }{ 4 } x- \frac{ 3 }{ 2 } )
Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
x-2-2\left(x+2\right)=-x-6
Multiply both sides of the equation by 4, the least common multiple of 4,2.
x-2-2x-4=-x-6
Use the distributive property to multiply -2 by x+2.
-x-2-4=-x-6
Combine x and -2x to get -x.
-x-6=-x-6
Subtract 4 from -2 to get -6.
-x-6+x=-6
Add x to both sides.
-6=-6
Combine -x and x to get 0.
\text{true}
Compare -6 and -6.
x\in \mathrm{C}
This is true for any x.
x-2-2\left(x+2\right)=-x-6
Multiply both sides of the equation by 4, the least common multiple of 4,2.
x-2-2x-4=-x-6
Use the distributive property to multiply -2 by x+2.
-x-2-4=-x-6
Combine x and -2x to get -x.
-x-6=-x-6
Subtract 4 from -2 to get -6.
-x-6+x=-6
Add x to both sides.
-6=-6
Combine -x and x to get 0.
\text{true}
Compare -6 and -6.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}