Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-2}{x^{2}+2x}-\frac{\left(x-1\right)x}{\left(x^{2}+4x+4\right)\left(4-x\right)}
Divide \frac{x-1}{x^{2}+4x+4} by \frac{4-x}{x} by multiplying \frac{x-1}{x^{2}+4x+4} by the reciprocal of \frac{4-x}{x}.
\frac{x-2}{x\left(x+2\right)}-\frac{\left(x-1\right)x}{\left(-x+4\right)\left(x+2\right)^{2}}
Factor x^{2}+2x. Factor \left(x^{2}+4x+4\right)\left(4-x\right).
\frac{\left(x-2\right)\left(x-4\right)\left(x+2\right)}{x\left(x-4\right)\left(x+2\right)^{2}}-\frac{\left(x-1\right)x\left(-1\right)x}{x\left(x-4\right)\left(x+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right) and \left(-x+4\right)\left(x+2\right)^{2} is x\left(x-4\right)\left(x+2\right)^{2}. Multiply \frac{x-2}{x\left(x+2\right)} times \frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}. Multiply \frac{\left(x-1\right)x}{\left(-x+4\right)\left(x+2\right)^{2}} times \frac{-x}{-x}.
\frac{\left(x-2\right)\left(x-4\right)\left(x+2\right)-\left(x-1\right)x\left(-1\right)x}{x\left(x-4\right)\left(x+2\right)^{2}}
Since \frac{\left(x-2\right)\left(x-4\right)\left(x+2\right)}{x\left(x-4\right)\left(x+2\right)^{2}} and \frac{\left(x-1\right)x\left(-1\right)x}{x\left(x-4\right)\left(x+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-2x^{2}-8x-2x^{2}+4x+16+x^{3}-x^{2}}{x\left(x-4\right)\left(x+2\right)^{2}}
Do the multiplications in \left(x-2\right)\left(x-4\right)\left(x+2\right)-\left(x-1\right)x\left(-1\right)x.
\frac{2x^{3}-5x^{2}-4x+16}{x\left(x-4\right)\left(x+2\right)^{2}}
Combine like terms in x^{3}-2x^{2}-8x-2x^{2}+4x+16+x^{3}-x^{2}.
\frac{2x^{3}-5x^{2}-4x+16}{x^{4}-12x^{2}-16x}
Expand x\left(x-4\right)\left(x+2\right)^{2}.
\frac{x-2}{x^{2}+2x}-\frac{\left(x-1\right)x}{\left(x^{2}+4x+4\right)\left(4-x\right)}
Divide \frac{x-1}{x^{2}+4x+4} by \frac{4-x}{x} by multiplying \frac{x-1}{x^{2}+4x+4} by the reciprocal of \frac{4-x}{x}.
\frac{x-2}{x\left(x+2\right)}-\frac{\left(x-1\right)x}{\left(-x+4\right)\left(x+2\right)^{2}}
Factor x^{2}+2x. Factor \left(x^{2}+4x+4\right)\left(4-x\right).
\frac{\left(x-2\right)\left(x-4\right)\left(x+2\right)}{x\left(x-4\right)\left(x+2\right)^{2}}-\frac{\left(x-1\right)x\left(-1\right)x}{x\left(x-4\right)\left(x+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right) and \left(-x+4\right)\left(x+2\right)^{2} is x\left(x-4\right)\left(x+2\right)^{2}. Multiply \frac{x-2}{x\left(x+2\right)} times \frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}. Multiply \frac{\left(x-1\right)x}{\left(-x+4\right)\left(x+2\right)^{2}} times \frac{-x}{-x}.
\frac{\left(x-2\right)\left(x-4\right)\left(x+2\right)-\left(x-1\right)x\left(-1\right)x}{x\left(x-4\right)\left(x+2\right)^{2}}
Since \frac{\left(x-2\right)\left(x-4\right)\left(x+2\right)}{x\left(x-4\right)\left(x+2\right)^{2}} and \frac{\left(x-1\right)x\left(-1\right)x}{x\left(x-4\right)\left(x+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-2x^{2}-8x-2x^{2}+4x+16+x^{3}-x^{2}}{x\left(x-4\right)\left(x+2\right)^{2}}
Do the multiplications in \left(x-2\right)\left(x-4\right)\left(x+2\right)-\left(x-1\right)x\left(-1\right)x.
\frac{2x^{3}-5x^{2}-4x+16}{x\left(x-4\right)\left(x+2\right)^{2}}
Combine like terms in x^{3}-2x^{2}-8x-2x^{2}+4x+16+x^{3}-x^{2}.
\frac{2x^{3}-5x^{2}-4x+16}{x^{4}-12x^{2}-16x}
Expand x\left(x-4\right)\left(x+2\right)^{2}.