Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+4}{x\left(x-3\right)}-\frac{1}{x\left(x+3\right)}}{\frac{x}{x-1}}
Factor x^{2}-3x. Factor 3x+x^{2}.
\frac{\frac{\left(x+4\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}-\frac{x-3}{x\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right) and x\left(x+3\right) is x\left(x-3\right)\left(x+3\right). Multiply \frac{x+4}{x\left(x-3\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{x\left(x+3\right)} times \frac{x-3}{x-3}.
\frac{\frac{\left(x+4\right)\left(x+3\right)-\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-1}}
Since \frac{\left(x+4\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} and \frac{x-3}{x\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x+x^{2}+4x+12-x+3}{x\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-1}}
Do the multiplications in \left(x+4\right)\left(x+3\right)-\left(x-3\right).
\frac{\frac{6x+x^{2}+15}{x\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-1}}
Combine like terms in 3x+x^{2}+4x+12-x+3.
\frac{\left(6x+x^{2}+15\right)\left(x-1\right)}{x\left(x-3\right)\left(x+3\right)x}
Divide \frac{6x+x^{2}+15}{x\left(x-3\right)\left(x+3\right)} by \frac{x}{x-1} by multiplying \frac{6x+x^{2}+15}{x\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x}{x-1}.
\frac{\left(6x+x^{2}+15\right)\left(x-1\right)}{x^{2}\left(x-3\right)\left(x+3\right)}
Multiply x and x to get x^{2}.
\frac{5x^{2}+9x+x^{3}-15}{x^{2}\left(x-3\right)\left(x+3\right)}
Use the distributive property to multiply 6x+x^{2}+15 by x-1 and combine like terms.
\frac{5x^{2}+9x+x^{3}-15}{\left(x^{3}-3x^{2}\right)\left(x+3\right)}
Use the distributive property to multiply x^{2} by x-3.
\frac{5x^{2}+9x+x^{3}-15}{x^{4}-9x^{2}}
Use the distributive property to multiply x^{3}-3x^{2} by x+3 and combine like terms.
\frac{\frac{x+4}{x\left(x-3\right)}-\frac{1}{x\left(x+3\right)}}{\frac{x}{x-1}}
Factor x^{2}-3x. Factor 3x+x^{2}.
\frac{\frac{\left(x+4\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}-\frac{x-3}{x\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right) and x\left(x+3\right) is x\left(x-3\right)\left(x+3\right). Multiply \frac{x+4}{x\left(x-3\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{x\left(x+3\right)} times \frac{x-3}{x-3}.
\frac{\frac{\left(x+4\right)\left(x+3\right)-\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-1}}
Since \frac{\left(x+4\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} and \frac{x-3}{x\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x+x^{2}+4x+12-x+3}{x\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-1}}
Do the multiplications in \left(x+4\right)\left(x+3\right)-\left(x-3\right).
\frac{\frac{6x+x^{2}+15}{x\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-1}}
Combine like terms in 3x+x^{2}+4x+12-x+3.
\frac{\left(6x+x^{2}+15\right)\left(x-1\right)}{x\left(x-3\right)\left(x+3\right)x}
Divide \frac{6x+x^{2}+15}{x\left(x-3\right)\left(x+3\right)} by \frac{x}{x-1} by multiplying \frac{6x+x^{2}+15}{x\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x}{x-1}.
\frac{\left(6x+x^{2}+15\right)\left(x-1\right)}{x^{2}\left(x-3\right)\left(x+3\right)}
Multiply x and x to get x^{2}.
\frac{5x^{2}+9x+x^{3}-15}{x^{2}\left(x-3\right)\left(x+3\right)}
Use the distributive property to multiply 6x+x^{2}+15 by x-1 and combine like terms.
\frac{5x^{2}+9x+x^{3}-15}{\left(x^{3}-3x^{2}\right)\left(x+3\right)}
Use the distributive property to multiply x^{2} by x-3.
\frac{5x^{2}+9x+x^{3}-15}{x^{4}-9x^{2}}
Use the distributive property to multiply x^{3}-3x^{2} by x+3 and combine like terms.