Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\left(\frac{1}{3}-\frac{3n}{n}\right)\times \frac{3n}{n-3n}
Cancel out n in both numerator and denominator.
\left(\frac{1}{3}-3\right)\times \frac{3n}{n-3n}
Cancel out n in both numerator and denominator.
\left(\frac{1}{3}-\frac{9}{3}\right)\times \frac{3n}{n-3n}
Convert 3 to fraction \frac{9}{3}.
\frac{1-9}{3}\times \frac{3n}{n-3n}
Since \frac{1}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{8}{3}\times \frac{3n}{n-3n}
Subtract 9 from 1 to get -8.
-\frac{8}{3}\times \frac{3n}{-2n}
Combine n and -3n to get -2n.
-\frac{8}{3}\times \frac{3}{-2}
Cancel out n in both numerator and denominator.
-\frac{8}{3}\left(-\frac{3}{2}\right)
Fraction \frac{3}{-2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{-8\left(-3\right)}{3\times 2}
Multiply -\frac{8}{3} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{24}{6}
Do the multiplications in the fraction \frac{-8\left(-3\right)}{3\times 2}.
4
Divide 24 by 6 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}