Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{9x^{4}y^{6}z^{4}\times \left(9x^{-1}y^{2}\right)^{-1}}{3xy^{-6}z^{-2}\times \left(2xy^{2}z^{-3}\right)^{2}}
Divide \frac{9x^{4}y^{6}z^{4}}{3xy^{-6}z^{-2}} by \frac{\left(2xy^{2}z^{-3}\right)^{2}}{\left(9x^{-1}y^{2}\right)^{-1}} by multiplying \frac{9x^{4}y^{6}z^{4}}{3xy^{-6}z^{-2}} by the reciprocal of \frac{\left(2xy^{2}z^{-3}\right)^{2}}{\left(9x^{-1}y^{2}\right)^{-1}}.
\frac{3\times \frac{1}{9\times \frac{1}{x}y^{2}}x^{3}z^{4}y^{6}}{\left(2z^{-3}xy^{2}\right)^{2}y^{-6}z^{-2}}
Cancel out 3x in both numerator and denominator.
\frac{3\times \frac{1}{9\times \frac{1}{x}y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{3\times \frac{1}{\frac{9}{x}y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express 9\times \frac{1}{x} as a single fraction.
\frac{3\times \frac{1}{\frac{9y^{2}}{x}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express \frac{9}{x}y^{2} as a single fraction.
\frac{3\times \frac{x}{9y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Divide 1 by \frac{9y^{2}}{x} by multiplying 1 by the reciprocal of \frac{9y^{2}}{x}.
\frac{\frac{3x}{9y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express 3\times \frac{x}{9y^{2}} as a single fraction.
\frac{\frac{x}{3y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{xx^{3}}{3y^{2}}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express \frac{x}{3y^{2}}x^{3} as a single fraction.
\frac{\frac{xx^{3}z^{6}}{3y^{2}}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express \frac{xx^{3}}{3y^{2}}z^{6} as a single fraction.
\frac{\frac{xx^{3}z^{6}y^{12}}{3y^{2}}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express \frac{xx^{3}z^{6}}{3y^{2}}y^{12} as a single fraction.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{\left(2z^{-3}xy^{2}\right)^{2}}
Cancel out y^{2} in both numerator and denominator.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{2^{2}\left(z^{-3}\right)^{2}x^{2}\left(y^{2}\right)^{2}}
Expand \left(2z^{-3}xy^{2}\right)^{2}.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{2^{2}z^{-6}x^{2}\left(y^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{2^{2}z^{-6}x^{2}y^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{4z^{-6}x^{2}y^{4}}
Calculate 2 to the power of 2 and get 4.
\frac{xx^{3}z^{6}y^{10}}{3\times 4z^{-6}x^{2}y^{4}}
Express \frac{\frac{xx^{3}z^{6}y^{10}}{3}}{4z^{-6}x^{2}y^{4}} as a single fraction.
\frac{x^{2}y^{6}z^{6}}{3\times 4z^{-6}}
Cancel out xxy^{4} in both numerator and denominator.
\frac{x^{2}y^{6}z^{12}}{3\times 4}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{2}y^{6}z^{12}}{12}
Multiply 3 and 4 to get 12.
\frac{9x^{4}y^{6}z^{4}\times \left(9x^{-1}y^{2}\right)^{-1}}{3xy^{-6}z^{-2}\times \left(2xy^{2}z^{-3}\right)^{2}}
Divide \frac{9x^{4}y^{6}z^{4}}{3xy^{-6}z^{-2}} by \frac{\left(2xy^{2}z^{-3}\right)^{2}}{\left(9x^{-1}y^{2}\right)^{-1}} by multiplying \frac{9x^{4}y^{6}z^{4}}{3xy^{-6}z^{-2}} by the reciprocal of \frac{\left(2xy^{2}z^{-3}\right)^{2}}{\left(9x^{-1}y^{2}\right)^{-1}}.
\frac{3\times \frac{1}{9\times \frac{1}{x}y^{2}}x^{3}z^{4}y^{6}}{\left(2z^{-3}xy^{2}\right)^{2}y^{-6}z^{-2}}
Cancel out 3x in both numerator and denominator.
\frac{3\times \frac{1}{9\times \frac{1}{x}y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{3\times \frac{1}{\frac{9}{x}y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express 9\times \frac{1}{x} as a single fraction.
\frac{3\times \frac{1}{\frac{9y^{2}}{x}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express \frac{9}{x}y^{2} as a single fraction.
\frac{3\times \frac{x}{9y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Divide 1 by \frac{9y^{2}}{x} by multiplying 1 by the reciprocal of \frac{9y^{2}}{x}.
\frac{\frac{3x}{9y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express 3\times \frac{x}{9y^{2}} as a single fraction.
\frac{\frac{x}{3y^{2}}x^{3}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{xx^{3}}{3y^{2}}z^{6}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express \frac{x}{3y^{2}}x^{3} as a single fraction.
\frac{\frac{xx^{3}z^{6}}{3y^{2}}y^{12}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express \frac{xx^{3}}{3y^{2}}z^{6} as a single fraction.
\frac{\frac{xx^{3}z^{6}y^{12}}{3y^{2}}}{\left(2z^{-3}xy^{2}\right)^{2}}
Express \frac{xx^{3}z^{6}}{3y^{2}}y^{12} as a single fraction.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{\left(2z^{-3}xy^{2}\right)^{2}}
Cancel out y^{2} in both numerator and denominator.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{2^{2}\left(z^{-3}\right)^{2}x^{2}\left(y^{2}\right)^{2}}
Expand \left(2z^{-3}xy^{2}\right)^{2}.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{2^{2}z^{-6}x^{2}\left(y^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{2^{2}z^{-6}x^{2}y^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{xx^{3}z^{6}y^{10}}{3}}{4z^{-6}x^{2}y^{4}}
Calculate 2 to the power of 2 and get 4.
\frac{xx^{3}z^{6}y^{10}}{3\times 4z^{-6}x^{2}y^{4}}
Express \frac{\frac{xx^{3}z^{6}y^{10}}{3}}{4z^{-6}x^{2}y^{4}} as a single fraction.
\frac{x^{2}y^{6}z^{6}}{3\times 4z^{-6}}
Cancel out xxy^{4} in both numerator and denominator.
\frac{x^{2}y^{6}z^{12}}{3\times 4}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{2}y^{6}z^{12}}{12}
Multiply 3 and 4 to get 12.