Solve for y
y=-\frac{7x}{12}+\frac{50\sqrt{47}}{141x}
x\neq 0
Solve for x
x=\frac{2\sqrt{19881y^{2}+16450\sqrt{47}}}{329}-\frac{6y}{7}
x=-\frac{2\sqrt{19881y^{2}+16450\sqrt{47}}}{329}-\frac{6y}{7}
Graph
Share
Copied to clipboard
\frac{7x+12y}{25}\sqrt{47}x=8
Multiply both sides of the equation by 4.
\frac{\left(7x+12y\right)\sqrt{47}}{25}x=8
Express \frac{7x+12y}{25}\sqrt{47} as a single fraction.
\frac{\left(7x+12y\right)\sqrt{47}x}{25}=8
Express \frac{\left(7x+12y\right)\sqrt{47}}{25}x as a single fraction.
\frac{\left(7x\sqrt{47}+12y\sqrt{47}\right)x}{25}=8
Use the distributive property to multiply 7x+12y by \sqrt{47}.
\frac{7\sqrt{47}x^{2}+12y\sqrt{47}x}{25}=8
Use the distributive property to multiply 7x\sqrt{47}+12y\sqrt{47} by x.
7\sqrt{47}x^{2}+12y\sqrt{47}x=8\times 25
Multiply both sides by 25.
7\sqrt{47}x^{2}+12y\sqrt{47}x=200
Multiply 8 and 25 to get 200.
12y\sqrt{47}x=200-7\sqrt{47}x^{2}
Subtract 7\sqrt{47}x^{2} from both sides.
12\sqrt{47}xy=-7\sqrt{47}x^{2}+200
The equation is in standard form.
\frac{12\sqrt{47}xy}{12\sqrt{47}x}=\frac{-7\sqrt{47}x^{2}+200}{12\sqrt{47}x}
Divide both sides by 12\sqrt{47}x.
y=\frac{-7\sqrt{47}x^{2}+200}{12\sqrt{47}x}
Dividing by 12\sqrt{47}x undoes the multiplication by 12\sqrt{47}x.
y=-\frac{7x}{12}+\frac{50\sqrt{47}}{141x}
Divide 200-7\sqrt{47}x^{2} by 12\sqrt{47}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}