Evaluate
\frac{4273}{2280}\approx 1.874122807
Factor
\frac{4273}{2 ^ {3} \cdot 3 \cdot 5 \cdot 19} = 1\frac{1993}{2280} = 1.874122807017544
Share
Copied to clipboard
\frac{7}{8}+\frac{4+1}{4}-\frac{\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 1+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Multiply 1 and 4 to get 4.
\frac{7}{8}+\frac{5}{4}-\frac{\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 1+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Add 4 and 1 to get 5.
\frac{7}{8}+\frac{10}{8}-\frac{\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 1+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Least common multiple of 8 and 4 is 8. Convert \frac{7}{8} and \frac{5}{4} to fractions with denominator 8.
\frac{7+10}{8}-\frac{\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 1+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Since \frac{7}{8} and \frac{10}{8} have the same denominator, add them by adding their numerators.
\frac{17}{8}-\frac{\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 1+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Add 7 and 10 to get 17.
\frac{17}{8}-\frac{\frac{3\times 4}{2\times 9}}{\frac{2\times 1+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Multiply \frac{3}{2} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{17}{8}-\frac{\frac{12}{18}}{\frac{2\times 1+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Do the multiplications in the fraction \frac{3\times 4}{2\times 9}.
\frac{17}{8}-\frac{\frac{2}{3}}{\frac{2\times 1+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
\frac{17}{8}-\frac{\frac{2}{3}}{\frac{2+1}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Multiply 2 and 1 to get 2.
\frac{17}{8}-\frac{\frac{2}{3}}{\frac{3}{1}-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Add 2 and 1 to get 3.
\frac{17}{8}-\frac{\frac{2}{3}}{3-\frac{1\times 10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Anything divided by one gives itself.
\frac{17}{8}-\frac{\frac{2}{3}}{3-\frac{10+1}{10}}+\frac{1}{14}\times \frac{7}{5}
Multiply 1 and 10 to get 10.
\frac{17}{8}-\frac{\frac{2}{3}}{3-\frac{11}{10}}+\frac{1}{14}\times \frac{7}{5}
Add 10 and 1 to get 11.
\frac{17}{8}-\frac{\frac{2}{3}}{\frac{30}{10}-\frac{11}{10}}+\frac{1}{14}\times \frac{7}{5}
Convert 3 to fraction \frac{30}{10}.
\frac{17}{8}-\frac{\frac{2}{3}}{\frac{30-11}{10}}+\frac{1}{14}\times \frac{7}{5}
Since \frac{30}{10} and \frac{11}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{8}-\frac{\frac{2}{3}}{\frac{19}{10}}+\frac{1}{14}\times \frac{7}{5}
Subtract 11 from 30 to get 19.
\frac{17}{8}-\frac{2}{3}\times \frac{10}{19}+\frac{1}{14}\times \frac{7}{5}
Divide \frac{2}{3} by \frac{19}{10} by multiplying \frac{2}{3} by the reciprocal of \frac{19}{10}.
\frac{17}{8}-\frac{2\times 10}{3\times 19}+\frac{1}{14}\times \frac{7}{5}
Multiply \frac{2}{3} times \frac{10}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{17}{8}-\frac{20}{57}+\frac{1}{14}\times \frac{7}{5}
Do the multiplications in the fraction \frac{2\times 10}{3\times 19}.
\frac{969}{456}-\frac{160}{456}+\frac{1}{14}\times \frac{7}{5}
Least common multiple of 8 and 57 is 456. Convert \frac{17}{8} and \frac{20}{57} to fractions with denominator 456.
\frac{969-160}{456}+\frac{1}{14}\times \frac{7}{5}
Since \frac{969}{456} and \frac{160}{456} have the same denominator, subtract them by subtracting their numerators.
\frac{809}{456}+\frac{1}{14}\times \frac{7}{5}
Subtract 160 from 969 to get 809.
\frac{809}{456}+\frac{1\times 7}{14\times 5}
Multiply \frac{1}{14} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{809}{456}+\frac{7}{70}
Do the multiplications in the fraction \frac{1\times 7}{14\times 5}.
\frac{809}{456}+\frac{1}{10}
Reduce the fraction \frac{7}{70} to lowest terms by extracting and canceling out 7.
\frac{4045}{2280}+\frac{228}{2280}
Least common multiple of 456 and 10 is 2280. Convert \frac{809}{456} and \frac{1}{10} to fractions with denominator 2280.
\frac{4045+228}{2280}
Since \frac{4045}{2280} and \frac{228}{2280} have the same denominator, add them by adding their numerators.
\frac{4273}{2280}
Add 4045 and 228 to get 4273.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}