Solve for b
b = \frac{12 \sqrt{5}}{5} \approx 5.366563146
b = -\frac{12 \sqrt{5}}{5} \approx -5.366563146
Share
Copied to clipboard
\frac{5}{6}b^{2}=24
Multiply b and b to get b^{2}.
b^{2}=24\times \frac{6}{5}
Multiply both sides by \frac{6}{5}, the reciprocal of \frac{5}{6}.
b^{2}=\frac{24\times 6}{5}
Express 24\times \frac{6}{5} as a single fraction.
b^{2}=\frac{144}{5}
Multiply 24 and 6 to get 144.
b=\frac{12\sqrt{5}}{5} b=-\frac{12\sqrt{5}}{5}
Take the square root of both sides of the equation.
\frac{5}{6}b^{2}=24
Multiply b and b to get b^{2}.
\frac{5}{6}b^{2}-24=0
Subtract 24 from both sides.
b=\frac{0±\sqrt{0^{2}-4\times \frac{5}{6}\left(-24\right)}}{2\times \frac{5}{6}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{6} for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times \frac{5}{6}\left(-24\right)}}{2\times \frac{5}{6}}
Square 0.
b=\frac{0±\sqrt{-\frac{10}{3}\left(-24\right)}}{2\times \frac{5}{6}}
Multiply -4 times \frac{5}{6}.
b=\frac{0±\sqrt{80}}{2\times \frac{5}{6}}
Multiply -\frac{10}{3} times -24.
b=\frac{0±4\sqrt{5}}{2\times \frac{5}{6}}
Take the square root of 80.
b=\frac{0±4\sqrt{5}}{\frac{5}{3}}
Multiply 2 times \frac{5}{6}.
b=\frac{12\sqrt{5}}{5}
Now solve the equation b=\frac{0±4\sqrt{5}}{\frac{5}{3}} when ± is plus.
b=-\frac{12\sqrt{5}}{5}
Now solve the equation b=\frac{0±4\sqrt{5}}{\frac{5}{3}} when ± is minus.
b=\frac{12\sqrt{5}}{5} b=-\frac{12\sqrt{5}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}