Evaluate
\frac{305}{42}\approx 7.261904762
Factor
\frac{5 \cdot 61}{2 \cdot 3 \cdot 7} = 7\frac{11}{42} = 7.261904761904762
Share
Copied to clipboard
5+\frac{1}{3}-\left(\frac{1}{4}-\frac{3}{1}+\frac{5}{4}-\frac{3}{7}\right)
Anything divided by one gives itself.
\frac{15}{3}+\frac{1}{3}-\left(\frac{1}{4}-\frac{3}{1}+\frac{5}{4}-\frac{3}{7}\right)
Convert 5 to fraction \frac{15}{3}.
\frac{15+1}{3}-\left(\frac{1}{4}-\frac{3}{1}+\frac{5}{4}-\frac{3}{7}\right)
Since \frac{15}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{16}{3}-\left(\frac{1}{4}-\frac{3}{1}+\frac{5}{4}-\frac{3}{7}\right)
Add 15 and 1 to get 16.
\frac{16}{3}-\left(\frac{1}{4}-3+\frac{5}{4}-\frac{3}{7}\right)
Anything divided by one gives itself.
\frac{16}{3}-\left(\frac{1}{4}-\frac{12}{4}+\frac{5}{4}-\frac{3}{7}\right)
Convert 3 to fraction \frac{12}{4}.
\frac{16}{3}-\left(\frac{1-12}{4}+\frac{5}{4}-\frac{3}{7}\right)
Since \frac{1}{4} and \frac{12}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16}{3}-\left(-\frac{11}{4}+\frac{5}{4}-\frac{3}{7}\right)
Subtract 12 from 1 to get -11.
\frac{16}{3}-\left(\frac{-11+5}{4}-\frac{3}{7}\right)
Since -\frac{11}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{16}{3}-\left(\frac{-6}{4}-\frac{3}{7}\right)
Add -11 and 5 to get -6.
\frac{16}{3}-\left(-\frac{3}{2}-\frac{3}{7}\right)
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{16}{3}-\left(-\frac{21}{14}-\frac{6}{14}\right)
Least common multiple of 2 and 7 is 14. Convert -\frac{3}{2} and \frac{3}{7} to fractions with denominator 14.
\frac{16}{3}-\frac{-21-6}{14}
Since -\frac{21}{14} and \frac{6}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{16}{3}-\left(-\frac{27}{14}\right)
Subtract 6 from -21 to get -27.
\frac{16}{3}+\frac{27}{14}
The opposite of -\frac{27}{14} is \frac{27}{14}.
\frac{224}{42}+\frac{81}{42}
Least common multiple of 3 and 14 is 42. Convert \frac{16}{3} and \frac{27}{14} to fractions with denominator 42.
\frac{224+81}{42}
Since \frac{224}{42} and \frac{81}{42} have the same denominator, add them by adding their numerators.
\frac{305}{42}
Add 224 and 81 to get 305.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}