Evaluate
-\frac{x-4}{x-1}
Expand
\frac{4-x}{x-1}
Graph
Share
Copied to clipboard
\frac{\frac{4}{x}+\frac{\left(3-x\right)x}{x}}{x-\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3-x times \frac{x}{x}.
\frac{\frac{4+\left(3-x\right)x}{x}}{x-\frac{1}{x}}
Since \frac{4}{x} and \frac{\left(3-x\right)x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{4+3x-x^{2}}{x}}{x-\frac{1}{x}}
Do the multiplications in 4+\left(3-x\right)x.
\frac{\frac{4+3x-x^{2}}{x}}{\frac{xx}{x}-\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{4+3x-x^{2}}{x}}{\frac{xx-1}{x}}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4+3x-x^{2}}{x}}{\frac{x^{2}-1}{x}}
Do the multiplications in xx-1.
\frac{\left(4+3x-x^{2}\right)x}{x\left(x^{2}-1\right)}
Divide \frac{4+3x-x^{2}}{x} by \frac{x^{2}-1}{x} by multiplying \frac{4+3x-x^{2}}{x} by the reciprocal of \frac{x^{2}-1}{x}.
\frac{-x^{2}+3x+4}{x^{2}-1}
Cancel out x in both numerator and denominator.
\frac{\left(x-4\right)\left(-x-1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Extract the negative sign in -1-x.
\frac{-\left(x-4\right)}{x-1}
Cancel out x+1 in both numerator and denominator.
\frac{-x+4}{x-1}
Expand the expression.
\frac{\frac{4}{x}+\frac{\left(3-x\right)x}{x}}{x-\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3-x times \frac{x}{x}.
\frac{\frac{4+\left(3-x\right)x}{x}}{x-\frac{1}{x}}
Since \frac{4}{x} and \frac{\left(3-x\right)x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{4+3x-x^{2}}{x}}{x-\frac{1}{x}}
Do the multiplications in 4+\left(3-x\right)x.
\frac{\frac{4+3x-x^{2}}{x}}{\frac{xx}{x}-\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{4+3x-x^{2}}{x}}{\frac{xx-1}{x}}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4+3x-x^{2}}{x}}{\frac{x^{2}-1}{x}}
Do the multiplications in xx-1.
\frac{\left(4+3x-x^{2}\right)x}{x\left(x^{2}-1\right)}
Divide \frac{4+3x-x^{2}}{x} by \frac{x^{2}-1}{x} by multiplying \frac{4+3x-x^{2}}{x} by the reciprocal of \frac{x^{2}-1}{x}.
\frac{-x^{2}+3x+4}{x^{2}-1}
Cancel out x in both numerator and denominator.
\frac{\left(x-4\right)\left(-x-1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Extract the negative sign in -1-x.
\frac{-\left(x-4\right)}{x-1}
Cancel out x+1 in both numerator and denominator.
\frac{-x+4}{x-1}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}