Evaluate
\frac{7}{18}\approx 0.388888889
Factor
\frac{7}{2 \cdot 3 ^ {2}} = 0.3888888888888889
Share
Copied to clipboard
\left(\frac{16}{20}-\frac{15}{20}\right)\times \frac{1\times 9+1}{9}+\frac{1}{3}
Least common multiple of 5 and 4 is 20. Convert \frac{4}{5} and \frac{3}{4} to fractions with denominator 20.
\frac{16-15}{20}\times \frac{1\times 9+1}{9}+\frac{1}{3}
Since \frac{16}{20} and \frac{15}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{20}\times \frac{1\times 9+1}{9}+\frac{1}{3}
Subtract 15 from 16 to get 1.
\frac{1}{20}\times \frac{9+1}{9}+\frac{1}{3}
Multiply 1 and 9 to get 9.
\frac{1}{20}\times \frac{10}{9}+\frac{1}{3}
Add 9 and 1 to get 10.
\frac{1\times 10}{20\times 9}+\frac{1}{3}
Multiply \frac{1}{20} times \frac{10}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{180}+\frac{1}{3}
Do the multiplications in the fraction \frac{1\times 10}{20\times 9}.
\frac{1}{18}+\frac{1}{3}
Reduce the fraction \frac{10}{180} to lowest terms by extracting and canceling out 10.
\frac{1}{18}+\frac{6}{18}
Least common multiple of 18 and 3 is 18. Convert \frac{1}{18} and \frac{1}{3} to fractions with denominator 18.
\frac{1+6}{18}
Since \frac{1}{18} and \frac{6}{18} have the same denominator, add them by adding their numerators.
\frac{7}{18}
Add 1 and 6 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}