Evaluate
\frac{23}{20}=1.15
Factor
\frac{23}{2 ^ {2} \cdot 5} = 1\frac{3}{20} = 1.15
Share
Copied to clipboard
\frac{\frac{16}{20}+\frac{5}{20}}{\frac{7}{3}}+\frac{7}{10}
Least common multiple of 5 and 4 is 20. Convert \frac{4}{5} and \frac{1}{4} to fractions with denominator 20.
\frac{\frac{16+5}{20}}{\frac{7}{3}}+\frac{7}{10}
Since \frac{16}{20} and \frac{5}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{21}{20}}{\frac{7}{3}}+\frac{7}{10}
Add 16 and 5 to get 21.
\frac{21}{20}\times \frac{3}{7}+\frac{7}{10}
Divide \frac{21}{20} by \frac{7}{3} by multiplying \frac{21}{20} by the reciprocal of \frac{7}{3}.
\frac{21\times 3}{20\times 7}+\frac{7}{10}
Multiply \frac{21}{20} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{63}{140}+\frac{7}{10}
Do the multiplications in the fraction \frac{21\times 3}{20\times 7}.
\frac{9}{20}+\frac{7}{10}
Reduce the fraction \frac{63}{140} to lowest terms by extracting and canceling out 7.
\frac{9}{20}+\frac{14}{20}
Least common multiple of 20 and 10 is 20. Convert \frac{9}{20} and \frac{7}{10} to fractions with denominator 20.
\frac{9+14}{20}
Since \frac{9}{20} and \frac{14}{20} have the same denominator, add them by adding their numerators.
\frac{23}{20}
Add 9 and 14 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}