Evaluate
1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\left(\frac{15}{25}-\frac{19}{25}\right)\times \frac{4\times 16+11}{16}-\frac{1}{1.5}\left(-\frac{3\times 8+3}{8}\right)
Least common multiple of 5 and 25 is 25. Convert \frac{3}{5} and \frac{19}{25} to fractions with denominator 25.
\frac{15-19}{25}\times \frac{4\times 16+11}{16}-\frac{1}{1.5}\left(-\frac{3\times 8+3}{8}\right)
Since \frac{15}{25} and \frac{19}{25} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{25}\times \frac{4\times 16+11}{16}-\frac{1}{1.5}\left(-\frac{3\times 8+3}{8}\right)
Subtract 19 from 15 to get -4.
-\frac{4}{25}\times \frac{64+11}{16}-\frac{1}{1.5}\left(-\frac{3\times 8+3}{8}\right)
Multiply 4 and 16 to get 64.
-\frac{4}{25}\times \frac{75}{16}-\frac{1}{1.5}\left(-\frac{3\times 8+3}{8}\right)
Add 64 and 11 to get 75.
\frac{-4\times 75}{25\times 16}-\frac{1}{1.5}\left(-\frac{3\times 8+3}{8}\right)
Multiply -\frac{4}{25} times \frac{75}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{-300}{400}-\frac{1}{1.5}\left(-\frac{3\times 8+3}{8}\right)
Do the multiplications in the fraction \frac{-4\times 75}{25\times 16}.
-\frac{3}{4}-\frac{1}{1.5}\left(-\frac{3\times 8+3}{8}\right)
Reduce the fraction \frac{-300}{400} to lowest terms by extracting and canceling out 100.
-\frac{3}{4}-\frac{10}{15}\left(-\frac{3\times 8+3}{8}\right)
Expand \frac{1}{1.5} by multiplying both numerator and the denominator by 10.
-\frac{3}{4}-\frac{2}{3}\left(-\frac{3\times 8+3}{8}\right)
Reduce the fraction \frac{10}{15} to lowest terms by extracting and canceling out 5.
-\frac{3}{4}-\frac{2}{3}\left(-\frac{24+3}{8}\right)
Multiply 3 and 8 to get 24.
-\frac{3}{4}-\frac{2}{3}\left(-\frac{27}{8}\right)
Add 24 and 3 to get 27.
-\frac{3}{4}-\frac{2\left(-27\right)}{3\times 8}
Multiply \frac{2}{3} times -\frac{27}{8} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{4}-\frac{-54}{24}
Do the multiplications in the fraction \frac{2\left(-27\right)}{3\times 8}.
-\frac{3}{4}-\left(-\frac{9}{4}\right)
Reduce the fraction \frac{-54}{24} to lowest terms by extracting and canceling out 6.
-\frac{3}{4}+\frac{9}{4}
The opposite of -\frac{9}{4} is \frac{9}{4}.
\frac{-3+9}{4}
Since -\frac{3}{4} and \frac{9}{4} have the same denominator, add them by adding their numerators.
\frac{6}{4}
Add -3 and 9 to get 6.
\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}