Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{2x}{3}+\frac{3}{3}\right)\left(\frac{2x}{3}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2x+3}{3}\left(\frac{2x}{3}-1\right)
Since \frac{2x}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{2x+3}{3}\left(\frac{2x}{3}-\frac{3}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2x+3}{3}\times \frac{2x-3}{3}
Since \frac{2x}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2x+3\right)\left(2x-3\right)}{3\times 3}
Multiply \frac{2x+3}{3} times \frac{2x-3}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+3\right)\left(2x-3\right)}{9}
Multiply 3 and 3 to get 9.
\frac{\left(2x\right)^{2}-3^{2}}{9}
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2^{2}x^{2}-3^{2}}{9}
Expand \left(2x\right)^{2}.
\frac{4x^{2}-3^{2}}{9}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-9}{9}
Calculate 3 to the power of 2 and get 9.
\left(\frac{2x}{3}+\frac{3}{3}\right)\left(\frac{2x}{3}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2x+3}{3}\left(\frac{2x}{3}-1\right)
Since \frac{2x}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{2x+3}{3}\left(\frac{2x}{3}-\frac{3}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2x+3}{3}\times \frac{2x-3}{3}
Since \frac{2x}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2x+3\right)\left(2x-3\right)}{3\times 3}
Multiply \frac{2x+3}{3} times \frac{2x-3}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+3\right)\left(2x-3\right)}{9}
Multiply 3 and 3 to get 9.
\frac{\left(2x\right)^{2}-3^{2}}{9}
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2^{2}x^{2}-3^{2}}{9}
Expand \left(2x\right)^{2}.
\frac{4x^{2}-3^{2}}{9}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-9}{9}
Calculate 3 to the power of 2 and get 9.