Evaluate
\frac{4x^{2}}{9}-1
Expand
\frac{4x^{2}}{9}-1
Graph
Share
Copied to clipboard
\left(\frac{2x}{3}+\frac{3}{3}\right)\left(\frac{2x}{3}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2x+3}{3}\left(\frac{2x}{3}-1\right)
Since \frac{2x}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{2x+3}{3}\left(\frac{2x}{3}-\frac{3}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2x+3}{3}\times \frac{2x-3}{3}
Since \frac{2x}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2x+3\right)\left(2x-3\right)}{3\times 3}
Multiply \frac{2x+3}{3} times \frac{2x-3}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+3\right)\left(2x-3\right)}{9}
Multiply 3 and 3 to get 9.
\frac{\left(2x\right)^{2}-3^{2}}{9}
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2^{2}x^{2}-3^{2}}{9}
Expand \left(2x\right)^{2}.
\frac{4x^{2}-3^{2}}{9}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-9}{9}
Calculate 3 to the power of 2 and get 9.
\left(\frac{2x}{3}+\frac{3}{3}\right)\left(\frac{2x}{3}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2x+3}{3}\left(\frac{2x}{3}-1\right)
Since \frac{2x}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{2x+3}{3}\left(\frac{2x}{3}-\frac{3}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2x+3}{3}\times \frac{2x-3}{3}
Since \frac{2x}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2x+3\right)\left(2x-3\right)}{3\times 3}
Multiply \frac{2x+3}{3} times \frac{2x-3}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+3\right)\left(2x-3\right)}{9}
Multiply 3 and 3 to get 9.
\frac{\left(2x\right)^{2}-3^{2}}{9}
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2^{2}x^{2}-3^{2}}{9}
Expand \left(2x\right)^{2}.
\frac{4x^{2}-3^{2}}{9}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-9}{9}
Calculate 3 to the power of 2 and get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}