Solve for x
x = -\frac{307}{3} = -102\frac{1}{3} \approx -102.333333333
Graph
Share
Copied to clipboard
\left(\frac{7}{12}+\frac{24.5}{50}+\frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Reduce the fraction \frac{28}{48} to lowest terms by extracting and canceling out 4.
\left(\frac{7}{12}+\frac{245}{500}+\frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Expand \frac{24.5}{50} by multiplying both numerator and the denominator by 10.
\left(\frac{7}{12}+\frac{49}{100}+\frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Reduce the fraction \frac{245}{500} to lowest terms by extracting and canceling out 5.
\left(\frac{175}{300}+\frac{147}{300}+\frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Least common multiple of 12 and 100 is 300. Convert \frac{7}{12} and \frac{49}{100} to fractions with denominator 300.
\left(\frac{175+147}{300}+\frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Since \frac{175}{300} and \frac{147}{300} have the same denominator, add them by adding their numerators.
\left(\frac{322}{300}+\frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Add 175 and 147 to get 322.
\left(\frac{161}{150}+\frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Reduce the fraction \frac{322}{300} to lowest terms by extracting and canceling out 2.
\left(\frac{161}{150}+\frac{x}{100}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Add 48 and 52 to get 100.
\left(\frac{161\times 2}{300}+\frac{3x}{300}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 150 and 100 is 300. Multiply \frac{161}{150} times \frac{2}{2}. Multiply \frac{x}{100} times \frac{3}{3}.
\frac{161\times 2+3x}{300}\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Since \frac{161\times 2}{300} and \frac{3x}{300} have the same denominator, add them by adding their numerators.
\frac{322+3x}{300}\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Do the multiplications in 161\times 2+3x.
\frac{322+3x}{300}\times 0.1+\frac{4}{5}\times 0.15+\frac{15}{30}\times 0.75=0.5
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{322+3x}{300}\times 0.1+\frac{4}{5}\times \frac{3}{20}+\frac{15}{30}\times 0.75=0.5
Convert decimal number 0.15 to fraction \frac{15}{100}. Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{322+3x}{300}\times 0.1+\frac{4\times 3}{5\times 20}+\frac{15}{30}\times 0.75=0.5
Multiply \frac{4}{5} times \frac{3}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{322+3x}{300}\times 0.1+\frac{12}{100}+\frac{15}{30}\times 0.75=0.5
Do the multiplications in the fraction \frac{4\times 3}{5\times 20}.
\frac{322+3x}{300}\times 0.1+\frac{3}{25}+\frac{15}{30}\times 0.75=0.5
Reduce the fraction \frac{12}{100} to lowest terms by extracting and canceling out 4.
\frac{322+3x}{300}\times 0.1+\frac{3}{25}+\frac{1}{2}\times 0.75=0.5
Reduce the fraction \frac{15}{30} to lowest terms by extracting and canceling out 15.
\frac{322+3x}{300}\times 0.1+\frac{3}{25}+\frac{1}{2}\times \frac{3}{4}=0.5
Convert decimal number 0.75 to fraction \frac{75}{100}. Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{322+3x}{300}\times 0.1+\frac{3}{25}+\frac{1\times 3}{2\times 4}=0.5
Multiply \frac{1}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{322+3x}{300}\times 0.1+\frac{3}{25}+\frac{3}{8}=0.5
Do the multiplications in the fraction \frac{1\times 3}{2\times 4}.
\frac{322+3x}{300}\times 0.1+\frac{24}{200}+\frac{75}{200}=0.5
Least common multiple of 25 and 8 is 200. Convert \frac{3}{25} and \frac{3}{8} to fractions with denominator 200.
\frac{322+3x}{300}\times 0.1+\frac{24+75}{200}=0.5
Since \frac{24}{200} and \frac{75}{200} have the same denominator, add them by adding their numerators.
\frac{322+3x}{300}\times 0.1+\frac{99}{200}=0.5
Add 24 and 75 to get 99.
\left(\frac{161}{150}+\frac{1}{100}x\right)\times 0.1+\frac{99}{200}=0.5
Divide each term of 322+3x by 300 to get \frac{161}{150}+\frac{1}{100}x.
\frac{161}{150}\times 0.1+\frac{1}{100}x\times 0.1+\frac{99}{200}=0.5
Use the distributive property to multiply \frac{161}{150}+\frac{1}{100}x by 0.1.
\frac{161}{150}\times \frac{1}{10}+\frac{1}{100}x\times 0.1+\frac{99}{200}=0.5
Convert decimal number 0.1 to fraction \frac{1}{10}.
\frac{161\times 1}{150\times 10}+\frac{1}{100}x\times 0.1+\frac{99}{200}=0.5
Multiply \frac{161}{150} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{161}{1500}+\frac{1}{100}x\times 0.1+\frac{99}{200}=0.5
Do the multiplications in the fraction \frac{161\times 1}{150\times 10}.
\frac{161}{1500}+\frac{1}{100}x\times \frac{1}{10}+\frac{99}{200}=0.5
Convert decimal number 0.1 to fraction \frac{1}{10}.
\frac{161}{1500}+\frac{1\times 1}{100\times 10}x+\frac{99}{200}=0.5
Multiply \frac{1}{100} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{161}{1500}+\frac{1}{1000}x+\frac{99}{200}=0.5
Do the multiplications in the fraction \frac{1\times 1}{100\times 10}.
\frac{322}{3000}+\frac{1}{1000}x+\frac{1485}{3000}=0.5
Least common multiple of 1500 and 200 is 3000. Convert \frac{161}{1500} and \frac{99}{200} to fractions with denominator 3000.
\frac{322+1485}{3000}+\frac{1}{1000}x=0.5
Since \frac{322}{3000} and \frac{1485}{3000} have the same denominator, add them by adding their numerators.
\frac{1807}{3000}+\frac{1}{1000}x=0.5
Add 322 and 1485 to get 1807.
\frac{1}{1000}x=0.5-\frac{1807}{3000}
Subtract \frac{1807}{3000} from both sides.
\frac{1}{1000}x=\frac{1}{2}-\frac{1807}{3000}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{1000}x=\frac{1500}{3000}-\frac{1807}{3000}
Least common multiple of 2 and 3000 is 3000. Convert \frac{1}{2} and \frac{1807}{3000} to fractions with denominator 3000.
\frac{1}{1000}x=\frac{1500-1807}{3000}
Since \frac{1500}{3000} and \frac{1807}{3000} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{1000}x=-\frac{307}{3000}
Subtract 1807 from 1500 to get -307.
x=-\frac{307}{3000}\times 1000
Multiply both sides by 1000, the reciprocal of \frac{1}{1000}.
x=\frac{-307\times 1000}{3000}
Express -\frac{307}{3000}\times 1000 as a single fraction.
x=\frac{-307000}{3000}
Multiply -307 and 1000 to get -307000.
x=-\frac{307}{3}
Reduce the fraction \frac{-307000}{3000} to lowest terms by extracting and canceling out 1000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}