Evaluate
3001\sqrt{3}+3000\approx 8197.884473514
Factor
3001 \sqrt{3} + 3000 = 8197.884473514
Quiz
Arithmetic
5 problems similar to:
( \frac{ 2000 \sqrt{ 3 } }{ 3- \sqrt{ 3 } } ) \times 3+ \sqrt{ 3 }
Share
Copied to clipboard
3\times \frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}+\sqrt{3}
Rationalize the denominator of \frac{2000\sqrt{3}}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
3\times \frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}+\sqrt{3}
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\times \frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{9-3}+\sqrt{3}
Square 3. Square \sqrt{3}.
3\times \frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{6}+\sqrt{3}
Subtract 3 from 9 to get 6.
\frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{2}+\sqrt{3}
Cancel out 6, the greatest common factor in 3 and 6.
\frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{2}+\frac{2\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2}{2}.
\frac{2000\sqrt{3}\left(3+\sqrt{3}\right)+2\sqrt{3}}{2}
Since \frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{2} and \frac{2\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{6000\sqrt{3}+6000+2\sqrt{3}}{2}
Do the multiplications in 2000\sqrt{3}\left(3+\sqrt{3}\right)+2\sqrt{3}.
\frac{6002\sqrt{3}+6000}{2}
Do the calculations in 6000\sqrt{3}+6000+2\sqrt{3}.
3001\sqrt{3}+3000
Divide each term of 6002\sqrt{3}+6000 by 2 to get 3001\sqrt{3}+3000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}