Evaluate
\frac{8}{45}\approx 0.177777778
Factor
\frac{2 ^ {3}}{3 ^ {2} \cdot 5} = 0.17777777777777778
Share
Copied to clipboard
\frac{\frac{2}{10}-\frac{3}{10}\times \frac{3}{9}}{\sqrt{1-\frac{3}{4}}}-\frac{2}{90}
Divide 4 by 4 to get 1.
\frac{\frac{1}{5}-\frac{3}{10}\times \frac{3}{9}}{\sqrt{1-\frac{3}{4}}}-\frac{2}{90}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{5}-\frac{3}{10}\times \frac{1}{3}}{\sqrt{1-\frac{3}{4}}}-\frac{2}{90}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{5}-\frac{3\times 1}{10\times 3}}{\sqrt{1-\frac{3}{4}}}-\frac{2}{90}
Multiply \frac{3}{10} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{5}-\frac{1}{10}}{\sqrt{1-\frac{3}{4}}}-\frac{2}{90}
Cancel out 3 in both numerator and denominator.
\frac{\frac{2}{10}-\frac{1}{10}}{\sqrt{1-\frac{3}{4}}}-\frac{2}{90}
Least common multiple of 5 and 10 is 10. Convert \frac{1}{5} and \frac{1}{10} to fractions with denominator 10.
\frac{\frac{2-1}{10}}{\sqrt{1-\frac{3}{4}}}-\frac{2}{90}
Since \frac{2}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{10}}{\sqrt{1-\frac{3}{4}}}-\frac{2}{90}
Subtract 1 from 2 to get 1.
\frac{\frac{1}{10}}{\sqrt{\frac{4}{4}-\frac{3}{4}}}-\frac{2}{90}
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{1}{10}}{\sqrt{\frac{4-3}{4}}}-\frac{2}{90}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{10}}{\sqrt{\frac{1}{4}}}-\frac{2}{90}
Subtract 3 from 4 to get 1.
\frac{\frac{1}{10}}{\frac{1}{2}}-\frac{2}{90}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{1}{10}\times 2-\frac{2}{90}
Divide \frac{1}{10} by \frac{1}{2} by multiplying \frac{1}{10} by the reciprocal of \frac{1}{2}.
\frac{2}{10}-\frac{2}{90}
Multiply \frac{1}{10} and 2 to get \frac{2}{10}.
\frac{1}{5}-\frac{2}{90}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{5}-\frac{1}{45}
Reduce the fraction \frac{2}{90} to lowest terms by extracting and canceling out 2.
\frac{9}{45}-\frac{1}{45}
Least common multiple of 5 and 45 is 45. Convert \frac{1}{5} and \frac{1}{45} to fractions with denominator 45.
\frac{9-1}{45}
Since \frac{9}{45} and \frac{1}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{45}
Subtract 1 from 9 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}