Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{2}-\frac{1}{3}\times 4^{3}+4^{2}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Calculate the square root of 4 and get 2.
1-\frac{1}{3}\times 4^{3}+4^{2}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Divide 2 by 2 to get 1.
1-\frac{1}{3}\times 64+4^{2}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Calculate 4 to the power of 3 and get 64.
1-\frac{64}{3}+4^{2}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Multiply \frac{1}{3} and 64 to get \frac{64}{3}.
\frac{3}{3}-\frac{64}{3}+4^{2}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{3-64}{3}+4^{2}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Since \frac{3}{3} and \frac{64}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{61}{3}+4^{2}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Subtract 64 from 3 to get -61.
-\frac{61}{3}+16-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Calculate 4 to the power of 2 and get 16.
-\frac{61}{3}+\frac{48}{3}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Convert 16 to fraction \frac{48}{3}.
\frac{-61+48}{3}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Since -\frac{61}{3} and \frac{48}{3} have the same denominator, add them by adding their numerators.
-\frac{13}{3}-\left(\frac{2}{-4}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Add -61 and 48 to get -13.
-\frac{13}{3}-\left(-\frac{1}{2}-\frac{1}{3}\left(-4\right)^{3}-4^{2}\right)
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
-\frac{13}{3}-\left(-\frac{1}{2}-\frac{1}{3}\left(-64\right)-4^{2}\right)
Calculate -4 to the power of 3 and get -64.
-\frac{13}{3}-\left(-\frac{1}{2}-\frac{-64}{3}-4^{2}\right)
Multiply \frac{1}{3} and -64 to get \frac{-64}{3}.
-\frac{13}{3}-\left(-\frac{1}{2}-\left(-\frac{64}{3}\right)-4^{2}\right)
Fraction \frac{-64}{3} can be rewritten as -\frac{64}{3} by extracting the negative sign.
-\frac{13}{3}-\left(-\frac{1}{2}+\frac{64}{3}-4^{2}\right)
The opposite of -\frac{64}{3} is \frac{64}{3}.
-\frac{13}{3}-\left(-\frac{3}{6}+\frac{128}{6}-4^{2}\right)
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{64}{3} to fractions with denominator 6.
-\frac{13}{3}-\left(\frac{-3+128}{6}-4^{2}\right)
Since -\frac{3}{6} and \frac{128}{6} have the same denominator, add them by adding their numerators.
-\frac{13}{3}-\left(\frac{125}{6}-4^{2}\right)
Add -3 and 128 to get 125.
-\frac{13}{3}-\left(\frac{125}{6}-16\right)
Calculate 4 to the power of 2 and get 16.
-\frac{13}{3}-\left(\frac{125}{6}-\frac{96}{6}\right)
Convert 16 to fraction \frac{96}{6}.
-\frac{13}{3}-\frac{125-96}{6}
Since \frac{125}{6} and \frac{96}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{3}-\frac{29}{6}
Subtract 96 from 125 to get 29.
-\frac{26}{6}-\frac{29}{6}
Least common multiple of 3 and 6 is 6. Convert -\frac{13}{3} and \frac{29}{6} to fractions with denominator 6.
\frac{-26-29}{6}
Since -\frac{26}{6} and \frac{29}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{55}{6}
Subtract 29 from -26 to get -55.