Factor
\frac{\left(2x^{2}-3y^{2}\right)\left(2x^{2}+3y^{2}\right)y^{4}\left(4x^{4}+9y^{4}\right)}{81}
Evaluate
\frac{16y^{4}x^{8}}{81}-y^{12}
Share
Copied to clipboard
\frac{16x^{8}y^{4}-81y^{12}}{81}
Factor out \frac{1}{81}.
y^{4}\left(16x^{8}-81y^{8}\right)
Consider 16x^{8}y^{4}-81y^{12}. Factor out y^{4}.
\left(4x^{4}-9y^{4}\right)\left(4x^{4}+9y^{4}\right)
Consider 16x^{8}-81y^{8}. Rewrite 16x^{8}-81y^{8} as \left(4x^{4}\right)^{2}-\left(9y^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(2x^{2}-3y^{2}\right)\left(2x^{2}+3y^{2}\right)
Consider 4x^{4}-9y^{4}. Rewrite 4x^{4}-9y^{4} as \left(2x^{2}\right)^{2}-\left(3y^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{y^{4}\left(2x^{2}-3y^{2}\right)\left(2x^{2}+3y^{2}\right)\left(4x^{4}+9y^{4}\right)}{81}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}