Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{16x^{8}y^{4}-81y^{12}}{81}
Factor out \frac{1}{81}.
y^{4}\left(16x^{8}-81y^{8}\right)
Consider 16x^{8}y^{4}-81y^{12}. Factor out y^{4}.
\left(4x^{4}-9y^{4}\right)\left(4x^{4}+9y^{4}\right)
Consider 16x^{8}-81y^{8}. Rewrite 16x^{8}-81y^{8} as \left(4x^{4}\right)^{2}-\left(9y^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(2x^{2}-3y^{2}\right)\left(2x^{2}+3y^{2}\right)
Consider 4x^{4}-9y^{4}. Rewrite 4x^{4}-9y^{4} as \left(2x^{2}\right)^{2}-\left(3y^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{y^{4}\left(2x^{2}-3y^{2}\right)\left(2x^{2}+3y^{2}\right)\left(4x^{4}+9y^{4}\right)}{81}
Rewrite the complete factored expression.