Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{61}{7}x+x^{2}\times \frac{1356x}{1841x}\right)\times \frac{x^{2}}{3567}
Divide 122x by 14 to get \frac{61}{7}x.
\left(\frac{61}{7}x+x^{2}\times \frac{1356}{1841}\right)\times \frac{x^{2}}{3567}
Cancel out x in both numerator and denominator.
\frac{61}{7}x\times \frac{x^{2}}{3567}+\frac{1356}{1841}x^{2}\times \frac{x^{2}}{3567}
Use the distributive property to multiply \frac{61}{7}x+x^{2}\times \frac{1356}{1841} by \frac{x^{2}}{3567}.
\frac{61x^{2}}{7\times 3567}x+\frac{1356}{1841}x^{2}\times \frac{x^{2}}{3567}
Multiply \frac{61}{7} times \frac{x^{2}}{3567} by multiplying numerator times numerator and denominator times denominator.
\frac{61x^{2}}{7\times 3567}x+\frac{1356x^{2}}{1841\times 3567}x^{2}
Multiply \frac{1356}{1841} times \frac{x^{2}}{3567} by multiplying numerator times numerator and denominator times denominator.
\frac{61x^{2}}{7\times 3567}x+\frac{452x^{2}}{1189\times 1841}x^{2}
Cancel out 3 in both numerator and denominator.
\frac{61x^{2}}{24969}x+\frac{452x^{2}}{1189\times 1841}x^{2}
Multiply 7 and 3567 to get 24969.
\frac{61x^{2}x}{24969}+\frac{452x^{2}}{1189\times 1841}x^{2}
Express \frac{61x^{2}}{24969}x as a single fraction.
\frac{61x^{2}x}{24969}+\frac{452x^{2}}{2188949}x^{2}
Multiply 1189 and 1841 to get 2188949.
\frac{61x^{2}x}{24969}+\frac{452x^{2}x^{2}}{2188949}
Express \frac{452x^{2}}{2188949}x^{2} as a single fraction.
\frac{263\times 61x^{2}x}{6566847}+\frac{3\times 452x^{2}x^{2}}{6566847}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 24969 and 2188949 is 6566847. Multiply \frac{61x^{2}x}{24969} times \frac{263}{263}. Multiply \frac{452x^{2}x^{2}}{2188949} times \frac{3}{3}.
\frac{263\times 61x^{2}x+3\times 452x^{2}x^{2}}{6566847}
Since \frac{263\times 61x^{2}x}{6566847} and \frac{3\times 452x^{2}x^{2}}{6566847} have the same denominator, add them by adding their numerators.
\frac{16043x^{3}+1356x^{4}}{6566847}
Do the multiplications in 263\times 61x^{2}x+3\times 452x^{2}x^{2}.
\left(\frac{61}{7}x+x^{2}\times \frac{1356x}{1841x}\right)\times \frac{x^{2}}{3567}
Divide 122x by 14 to get \frac{61}{7}x.
\left(\frac{61}{7}x+x^{2}\times \frac{1356}{1841}\right)\times \frac{x^{2}}{3567}
Cancel out x in both numerator and denominator.
\frac{61}{7}x\times \frac{x^{2}}{3567}+\frac{1356}{1841}x^{2}\times \frac{x^{2}}{3567}
Use the distributive property to multiply \frac{61}{7}x+x^{2}\times \frac{1356}{1841} by \frac{x^{2}}{3567}.
\frac{61x^{2}}{7\times 3567}x+\frac{1356}{1841}x^{2}\times \frac{x^{2}}{3567}
Multiply \frac{61}{7} times \frac{x^{2}}{3567} by multiplying numerator times numerator and denominator times denominator.
\frac{61x^{2}}{7\times 3567}x+\frac{1356x^{2}}{1841\times 3567}x^{2}
Multiply \frac{1356}{1841} times \frac{x^{2}}{3567} by multiplying numerator times numerator and denominator times denominator.
\frac{61x^{2}}{7\times 3567}x+\frac{452x^{2}}{1189\times 1841}x^{2}
Cancel out 3 in both numerator and denominator.
\frac{61x^{2}}{24969}x+\frac{452x^{2}}{1189\times 1841}x^{2}
Multiply 7 and 3567 to get 24969.
\frac{61x^{2}x}{24969}+\frac{452x^{2}}{1189\times 1841}x^{2}
Express \frac{61x^{2}}{24969}x as a single fraction.
\frac{61x^{2}x}{24969}+\frac{452x^{2}}{2188949}x^{2}
Multiply 1189 and 1841 to get 2188949.
\frac{61x^{2}x}{24969}+\frac{452x^{2}x^{2}}{2188949}
Express \frac{452x^{2}}{2188949}x^{2} as a single fraction.
\frac{263\times 61x^{2}x}{6566847}+\frac{3\times 452x^{2}x^{2}}{6566847}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 24969 and 2188949 is 6566847. Multiply \frac{61x^{2}x}{24969} times \frac{263}{263}. Multiply \frac{452x^{2}x^{2}}{2188949} times \frac{3}{3}.
\frac{263\times 61x^{2}x+3\times 452x^{2}x^{2}}{6566847}
Since \frac{263\times 61x^{2}x}{6566847} and \frac{3\times 452x^{2}x^{2}}{6566847} have the same denominator, add them by adding their numerators.
\frac{16043x^{3}+1356x^{4}}{6566847}
Do the multiplications in 263\times 61x^{2}x+3\times 452x^{2}x^{2}.