Solve for x
x = \frac{1650}{61} = 27\frac{3}{61} \approx 27.049180328
Graph
Share
Copied to clipboard
1000\left(\frac{12\times 500}{1000}+\frac{1}{10}\right)x=165000
Multiply both sides of the equation by 1000, the least common multiple of 1000,10.
1000\left(\frac{6000}{1000}+\frac{1}{10}\right)x=165000
Multiply 12 and 500 to get 6000.
1000\left(6+\frac{1}{10}\right)x=165000
Divide 6000 by 1000 to get 6.
1000\left(\frac{60}{10}+\frac{1}{10}\right)x=165000
Convert 6 to fraction \frac{60}{10}.
1000\times \frac{60+1}{10}x=165000
Since \frac{60}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
1000\times \frac{61}{10}x=165000
Add 60 and 1 to get 61.
\frac{1000\times 61}{10}x=165000
Express 1000\times \frac{61}{10} as a single fraction.
\frac{61000}{10}x=165000
Multiply 1000 and 61 to get 61000.
6100x=165000
Divide 61000 by 10 to get 6100.
x=\frac{165000}{6100}
Divide both sides by 6100.
x=\frac{1650}{61}
Reduce the fraction \frac{165000}{6100} to lowest terms by extracting and canceling out 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}