Evaluate
\frac{686557}{272}\approx 2524.106617647
Factor
\frac{31 \cdot 22147}{17 \cdot 2 ^ {4}} = 2524\frac{29}{272} = 2524.106617647059
Share
Copied to clipboard
\left(\frac{1.29\times 10^{7}\times 5.5}{2.72\times 10^{6}}-9.8\right)\times 155
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
\left(\frac{1.29\times 5.5\times 10}{2.72}-9.8\right)\times 155
Cancel out 10^{6} in both numerator and denominator.
\left(\frac{7.095\times 10}{2.72}-9.8\right)\times 155
Multiply 1.29 and 5.5 to get 7.095.
\left(\frac{70.95}{2.72}-9.8\right)\times 155
Multiply 7.095 and 10 to get 70.95.
\left(\frac{7095}{272}-9.8\right)\times 155
Expand \frac{70.95}{2.72} by multiplying both numerator and the denominator by 100.
\left(\frac{7095}{272}-\frac{49}{5}\right)\times 155
Convert decimal number 9.8 to fraction \frac{98}{10}. Reduce the fraction \frac{98}{10} to lowest terms by extracting and canceling out 2.
\left(\frac{35475}{1360}-\frac{13328}{1360}\right)\times 155
Least common multiple of 272 and 5 is 1360. Convert \frac{7095}{272} and \frac{49}{5} to fractions with denominator 1360.
\frac{35475-13328}{1360}\times 155
Since \frac{35475}{1360} and \frac{13328}{1360} have the same denominator, subtract them by subtracting their numerators.
\frac{22147}{1360}\times 155
Subtract 13328 from 35475 to get 22147.
\frac{22147\times 155}{1360}
Express \frac{22147}{1360}\times 155 as a single fraction.
\frac{3432785}{1360}
Multiply 22147 and 155 to get 3432785.
\frac{686557}{272}
Reduce the fraction \frac{3432785}{1360} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}