Evaluate
\frac{21}{4}=5.25
Factor
\frac{3 \cdot 7}{2 ^ {2}} = 5\frac{1}{4} = 5.25
Share
Copied to clipboard
\left(\frac{5}{40}+\frac{16}{40}\right)\times \frac{\frac{5}{2}}{\frac{1}{4}}
Least common multiple of 8 and 5 is 40. Convert \frac{1}{8} and \frac{2}{5} to fractions with denominator 40.
\frac{5+16}{40}\times \frac{\frac{5}{2}}{\frac{1}{4}}
Since \frac{5}{40} and \frac{16}{40} have the same denominator, add them by adding their numerators.
\frac{21}{40}\times \frac{\frac{5}{2}}{\frac{1}{4}}
Add 5 and 16 to get 21.
\frac{21}{40}\times \frac{5}{2}\times 4
Divide \frac{5}{2} by \frac{1}{4} by multiplying \frac{5}{2} by the reciprocal of \frac{1}{4}.
\frac{21}{40}\times \frac{5\times 4}{2}
Express \frac{5}{2}\times 4 as a single fraction.
\frac{21}{40}\times \frac{20}{2}
Multiply 5 and 4 to get 20.
\frac{21}{40}\times 10
Divide 20 by 2 to get 10.
\frac{21\times 10}{40}
Express \frac{21}{40}\times 10 as a single fraction.
\frac{210}{40}
Multiply 21 and 10 to get 210.
\frac{21}{4}
Reduce the fraction \frac{210}{40} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}