Evaluate
\frac{\left(x-10\right)\left(x+3\right)\left(x+24\right)\left(x+36\right)}{30}
Expand
\frac{x^{4}}{30}+\frac{53x^{3}}{30}+\frac{69x^{2}}{5}-\frac{1308x}{5}-864
Graph
Share
Copied to clipboard
\left(\frac{1}{4}x\times \frac{1}{3}x+\frac{1}{4}x\times 12+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Apply the distributive property by multiplying each term of \frac{1}{4}x+6 by each term of \frac{1}{3}x+12.
\left(\frac{1}{4}x^{2}\times \frac{1}{3}+\frac{1}{4}x\times 12+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Multiply x and x to get x^{2}.
\left(\frac{1\times 1}{4\times 3}x^{2}+\frac{1}{4}x\times 12+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Multiply \frac{1}{4} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{1}{12}x^{2}+\frac{1}{4}x\times 12+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Do the multiplications in the fraction \frac{1\times 1}{4\times 3}.
\left(\frac{1}{12}x^{2}+\frac{12}{4}x+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Multiply \frac{1}{4} and 12 to get \frac{12}{4}.
\left(\frac{1}{12}x^{2}+3x+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Divide 12 by 4 to get 3.
\left(\frac{1}{12}x^{2}+3x+\frac{6}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Multiply 6 and \frac{1}{3} to get \frac{6}{3}.
\left(\frac{1}{12}x^{2}+3x+2x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Divide 6 by 3 to get 2.
\left(\frac{1}{12}x^{2}+5x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Combine 3x and 2x to get 5x.
\left(\frac{1}{12}x^{2}\times \frac{2}{5}x+\frac{1}{12}x^{2}\left(-4\right)+5x\times \frac{2}{5}x-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Apply the distributive property by multiplying each term of \frac{1}{12}x^{2}+5x+72 by each term of \frac{2}{5}x-4.
\left(\frac{1}{12}x^{3}\times \frac{2}{5}+\frac{1}{12}x^{2}\left(-4\right)+5x\times \frac{2}{5}x-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{12}x^{3}\times \frac{2}{5}+\frac{1}{12}x^{2}\left(-4\right)+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Multiply x and x to get x^{2}.
\left(\frac{1\times 2}{12\times 5}x^{3}+\frac{1}{12}x^{2}\left(-4\right)+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Multiply \frac{1}{12} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{2}{60}x^{3}+\frac{1}{12}x^{2}\left(-4\right)+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Do the multiplications in the fraction \frac{1\times 2}{12\times 5}.
\left(\frac{1}{30}x^{3}+\frac{1}{12}x^{2}\left(-4\right)+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Reduce the fraction \frac{2}{60} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{30}x^{3}+\frac{-4}{12}x^{2}+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Multiply \frac{1}{12} and -4 to get \frac{-4}{12}.
\left(\frac{1}{30}x^{3}-\frac{1}{3}x^{2}+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
\left(\frac{1}{30}x^{3}-\frac{1}{3}x^{2}+2x^{2}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Cancel out 5 and 5.
\left(\frac{1}{30}x^{3}+\frac{5}{3}x^{2}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Combine -\frac{1}{3}x^{2} and 2x^{2} to get \frac{5}{3}x^{2}.
\left(\frac{1}{30}x^{3}+\frac{5}{3}x^{2}-20x+\frac{72\times 2}{5}x-288\right)\left(x+3\right)
Express 72\times \frac{2}{5} as a single fraction.
\left(\frac{1}{30}x^{3}+\frac{5}{3}x^{2}-20x+\frac{144}{5}x-288\right)\left(x+3\right)
Multiply 72 and 2 to get 144.
\left(\frac{1}{30}x^{3}+\frac{5}{3}x^{2}+\frac{44}{5}x-288\right)\left(x+3\right)
Combine -20x and \frac{144}{5}x to get \frac{44}{5}x.
\frac{1}{30}x^{3}x+\frac{1}{30}x^{3}\times 3+\frac{5}{3}x^{2}x+\frac{5}{3}x^{2}\times 3+\frac{44}{5}xx+\frac{44}{5}x\times 3-288x-864
Apply the distributive property by multiplying each term of \frac{1}{30}x^{3}+\frac{5}{3}x^{2}+\frac{44}{5}x-288 by each term of x+3.
\frac{1}{30}x^{4}+\frac{1}{30}x^{3}\times 3+\frac{5}{3}x^{2}x+\frac{5}{3}x^{2}\times 3+\frac{44}{5}xx+\frac{44}{5}x\times 3-288x-864
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{1}{30}x^{4}+\frac{1}{30}x^{3}\times 3+\frac{5}{3}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}xx+\frac{44}{5}x\times 3-288x-864
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{30}x^{4}+\frac{1}{30}x^{3}\times 3+\frac{5}{3}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Multiply x and x to get x^{2}.
\frac{1}{30}x^{4}+\frac{3}{30}x^{3}+\frac{5}{3}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Multiply \frac{1}{30} and 3 to get \frac{3}{30}.
\frac{1}{30}x^{4}+\frac{1}{10}x^{3}+\frac{5}{3}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Combine \frac{1}{10}x^{3} and \frac{5}{3}x^{3} to get \frac{53}{30}x^{3}.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+5x^{2}+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Cancel out 3 and 3.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{69}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Combine 5x^{2} and \frac{44}{5}x^{2} to get \frac{69}{5}x^{2}.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{69}{5}x^{2}+\frac{44\times 3}{5}x-288x-864
Express \frac{44}{5}\times 3 as a single fraction.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{69}{5}x^{2}+\frac{132}{5}x-288x-864
Multiply 44 and 3 to get 132.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{69}{5}x^{2}-\frac{1308}{5}x-864
Combine \frac{132}{5}x and -288x to get -\frac{1308}{5}x.
\left(\frac{1}{4}x\times \frac{1}{3}x+\frac{1}{4}x\times 12+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Apply the distributive property by multiplying each term of \frac{1}{4}x+6 by each term of \frac{1}{3}x+12.
\left(\frac{1}{4}x^{2}\times \frac{1}{3}+\frac{1}{4}x\times 12+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Multiply x and x to get x^{2}.
\left(\frac{1\times 1}{4\times 3}x^{2}+\frac{1}{4}x\times 12+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Multiply \frac{1}{4} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{1}{12}x^{2}+\frac{1}{4}x\times 12+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Do the multiplications in the fraction \frac{1\times 1}{4\times 3}.
\left(\frac{1}{12}x^{2}+\frac{12}{4}x+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Multiply \frac{1}{4} and 12 to get \frac{12}{4}.
\left(\frac{1}{12}x^{2}+3x+6\times \frac{1}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Divide 12 by 4 to get 3.
\left(\frac{1}{12}x^{2}+3x+\frac{6}{3}x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Multiply 6 and \frac{1}{3} to get \frac{6}{3}.
\left(\frac{1}{12}x^{2}+3x+2x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Divide 6 by 3 to get 2.
\left(\frac{1}{12}x^{2}+5x+72\right)\left(\frac{2}{5}x-4\right)\left(x+3\right)
Combine 3x and 2x to get 5x.
\left(\frac{1}{12}x^{2}\times \frac{2}{5}x+\frac{1}{12}x^{2}\left(-4\right)+5x\times \frac{2}{5}x-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Apply the distributive property by multiplying each term of \frac{1}{12}x^{2}+5x+72 by each term of \frac{2}{5}x-4.
\left(\frac{1}{12}x^{3}\times \frac{2}{5}+\frac{1}{12}x^{2}\left(-4\right)+5x\times \frac{2}{5}x-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{12}x^{3}\times \frac{2}{5}+\frac{1}{12}x^{2}\left(-4\right)+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Multiply x and x to get x^{2}.
\left(\frac{1\times 2}{12\times 5}x^{3}+\frac{1}{12}x^{2}\left(-4\right)+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Multiply \frac{1}{12} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{2}{60}x^{3}+\frac{1}{12}x^{2}\left(-4\right)+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Do the multiplications in the fraction \frac{1\times 2}{12\times 5}.
\left(\frac{1}{30}x^{3}+\frac{1}{12}x^{2}\left(-4\right)+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Reduce the fraction \frac{2}{60} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{30}x^{3}+\frac{-4}{12}x^{2}+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Multiply \frac{1}{12} and -4 to get \frac{-4}{12}.
\left(\frac{1}{30}x^{3}-\frac{1}{3}x^{2}+5x^{2}\times \frac{2}{5}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
\left(\frac{1}{30}x^{3}-\frac{1}{3}x^{2}+2x^{2}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Cancel out 5 and 5.
\left(\frac{1}{30}x^{3}+\frac{5}{3}x^{2}-20x+72\times \frac{2}{5}x-288\right)\left(x+3\right)
Combine -\frac{1}{3}x^{2} and 2x^{2} to get \frac{5}{3}x^{2}.
\left(\frac{1}{30}x^{3}+\frac{5}{3}x^{2}-20x+\frac{72\times 2}{5}x-288\right)\left(x+3\right)
Express 72\times \frac{2}{5} as a single fraction.
\left(\frac{1}{30}x^{3}+\frac{5}{3}x^{2}-20x+\frac{144}{5}x-288\right)\left(x+3\right)
Multiply 72 and 2 to get 144.
\left(\frac{1}{30}x^{3}+\frac{5}{3}x^{2}+\frac{44}{5}x-288\right)\left(x+3\right)
Combine -20x and \frac{144}{5}x to get \frac{44}{5}x.
\frac{1}{30}x^{3}x+\frac{1}{30}x^{3}\times 3+\frac{5}{3}x^{2}x+\frac{5}{3}x^{2}\times 3+\frac{44}{5}xx+\frac{44}{5}x\times 3-288x-864
Apply the distributive property by multiplying each term of \frac{1}{30}x^{3}+\frac{5}{3}x^{2}+\frac{44}{5}x-288 by each term of x+3.
\frac{1}{30}x^{4}+\frac{1}{30}x^{3}\times 3+\frac{5}{3}x^{2}x+\frac{5}{3}x^{2}\times 3+\frac{44}{5}xx+\frac{44}{5}x\times 3-288x-864
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{1}{30}x^{4}+\frac{1}{30}x^{3}\times 3+\frac{5}{3}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}xx+\frac{44}{5}x\times 3-288x-864
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{30}x^{4}+\frac{1}{30}x^{3}\times 3+\frac{5}{3}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Multiply x and x to get x^{2}.
\frac{1}{30}x^{4}+\frac{3}{30}x^{3}+\frac{5}{3}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Multiply \frac{1}{30} and 3 to get \frac{3}{30}.
\frac{1}{30}x^{4}+\frac{1}{10}x^{3}+\frac{5}{3}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{5}{3}x^{2}\times 3+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Combine \frac{1}{10}x^{3} and \frac{5}{3}x^{3} to get \frac{53}{30}x^{3}.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+5x^{2}+\frac{44}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Cancel out 3 and 3.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{69}{5}x^{2}+\frac{44}{5}x\times 3-288x-864
Combine 5x^{2} and \frac{44}{5}x^{2} to get \frac{69}{5}x^{2}.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{69}{5}x^{2}+\frac{44\times 3}{5}x-288x-864
Express \frac{44}{5}\times 3 as a single fraction.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{69}{5}x^{2}+\frac{132}{5}x-288x-864
Multiply 44 and 3 to get 132.
\frac{1}{30}x^{4}+\frac{53}{30}x^{3}+\frac{69}{5}x^{2}-\frac{1308}{5}x-864
Combine \frac{132}{5}x and -288x to get -\frac{1308}{5}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}