Evaluate
-\frac{1067}{150}\approx -7.113333333
Factor
-\frac{1067}{150} = -7\frac{17}{150} = -7.113333333333333
Share
Copied to clipboard
\frac{\frac{2}{4\left(2\times 2+1\right)}+\frac{3\times 7+3}{7}\times \frac{1\times 9+5}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Divide \frac{1}{4} by \frac{2\times 2+1}{2} by multiplying \frac{1}{4} by the reciprocal of \frac{2\times 2+1}{2}.
\frac{\frac{2}{4\left(4+1\right)}+\frac{3\times 7+3}{7}\times \frac{1\times 9+5}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Multiply 2 and 2 to get 4.
\frac{\frac{2}{4\times 5}+\frac{3\times 7+3}{7}\times \frac{1\times 9+5}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Add 4 and 1 to get 5.
\frac{\frac{2}{20}+\frac{3\times 7+3}{7}\times \frac{1\times 9+5}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Multiply 4 and 5 to get 20.
\frac{\frac{1}{10}+\frac{3\times 7+3}{7}\times \frac{1\times 9+5}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{10}+\frac{21+3}{7}\times \frac{1\times 9+5}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Multiply 3 and 7 to get 21.
\frac{\frac{1}{10}+\frac{24}{7}\times \frac{1\times 9+5}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Add 21 and 3 to get 24.
\frac{\frac{1}{10}+\frac{24}{7}\times \frac{9+5}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Multiply 1 and 9 to get 9.
\frac{\frac{1}{10}+\frac{24}{7}\times \frac{14}{9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Add 9 and 5 to get 14.
\frac{\frac{1}{10}+\frac{24\times 14}{7\times 9}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Multiply \frac{24}{7} times \frac{14}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{10}+\frac{336}{63}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Do the multiplications in the fraction \frac{24\times 14}{7\times 9}.
\frac{\frac{1}{10}+\frac{16}{3}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Reduce the fraction \frac{336}{63} to lowest terms by extracting and canceling out 21.
\frac{\frac{3}{30}+\frac{160}{30}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Least common multiple of 10 and 3 is 30. Convert \frac{1}{10} and \frac{16}{3} to fractions with denominator 30.
\frac{\frac{3+160}{30}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Since \frac{3}{30} and \frac{160}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{163}{30}}{\frac{5}{1}}-\frac{8\times 5+1}{5}
Add 3 and 160 to get 163.
\frac{\frac{163}{30}}{5}-\frac{8\times 5+1}{5}
Anything divided by one gives itself.
\frac{163}{30\times 5}-\frac{8\times 5+1}{5}
Express \frac{\frac{163}{30}}{5} as a single fraction.
\frac{163}{150}-\frac{8\times 5+1}{5}
Multiply 30 and 5 to get 150.
\frac{163}{150}-\frac{40+1}{5}
Multiply 8 and 5 to get 40.
\frac{163}{150}-\frac{41}{5}
Add 40 and 1 to get 41.
\frac{163}{150}-\frac{1230}{150}
Least common multiple of 150 and 5 is 150. Convert \frac{163}{150} and \frac{41}{5} to fractions with denominator 150.
\frac{163-1230}{150}
Since \frac{163}{150} and \frac{1230}{150} have the same denominator, subtract them by subtracting their numerators.
-\frac{1067}{150}
Subtract 1230 from 163 to get -1067.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}