Evaluate
-\frac{53}{9}\approx -5.888888889
Factor
-\frac{53}{9} = -5\frac{8}{9} = -5.888888888888889
Share
Copied to clipboard
\left(\frac{1}{3}+\frac{9}{3}\right)\left(\frac{1}{3}-2\right)-\frac{1}{3}
Convert 3 to fraction \frac{9}{3}.
\frac{1+9}{3}\left(\frac{1}{3}-2\right)-\frac{1}{3}
Since \frac{1}{3} and \frac{9}{3} have the same denominator, add them by adding their numerators.
\frac{10}{3}\left(\frac{1}{3}-2\right)-\frac{1}{3}
Add 1 and 9 to get 10.
\frac{10}{3}\left(\frac{1}{3}-\frac{6}{3}\right)-\frac{1}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{10}{3}\times \frac{1-6}{3}-\frac{1}{3}
Since \frac{1}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}\left(-\frac{5}{3}\right)-\frac{1}{3}
Subtract 6 from 1 to get -5.
\frac{10\left(-5\right)}{3\times 3}-\frac{1}{3}
Multiply \frac{10}{3} times -\frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-50}{9}-\frac{1}{3}
Do the multiplications in the fraction \frac{10\left(-5\right)}{3\times 3}.
-\frac{50}{9}-\frac{1}{3}
Fraction \frac{-50}{9} can be rewritten as -\frac{50}{9} by extracting the negative sign.
-\frac{50}{9}-\frac{3}{9}
Least common multiple of 9 and 3 is 9. Convert -\frac{50}{9} and \frac{1}{3} to fractions with denominator 9.
\frac{-50-3}{9}
Since -\frac{50}{9} and \frac{3}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{53}{9}
Subtract 3 from -50 to get -53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}