Evaluate
\frac{25}{23}\approx 1.086956522
Factor
\frac{5 ^ {2}}{23} = 1\frac{2}{23} = 1.0869565217391304
Share
Copied to clipboard
\frac{\frac{5}{15}+\frac{6}{15}+\frac{1}{10}}{\frac{23}{30}}
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{2}{5} to fractions with denominator 15.
\frac{\frac{5+6}{15}+\frac{1}{10}}{\frac{23}{30}}
Since \frac{5}{15} and \frac{6}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{11}{15}+\frac{1}{10}}{\frac{23}{30}}
Add 5 and 6 to get 11.
\frac{\frac{22}{30}+\frac{3}{30}}{\frac{23}{30}}
Least common multiple of 15 and 10 is 30. Convert \frac{11}{15} and \frac{1}{10} to fractions with denominator 30.
\frac{\frac{22+3}{30}}{\frac{23}{30}}
Since \frac{22}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{25}{30}}{\frac{23}{30}}
Add 22 and 3 to get 25.
\frac{\frac{5}{6}}{\frac{23}{30}}
Reduce the fraction \frac{25}{30} to lowest terms by extracting and canceling out 5.
\frac{5}{6}\times \frac{30}{23}
Divide \frac{5}{6} by \frac{23}{30} by multiplying \frac{5}{6} by the reciprocal of \frac{23}{30}.
\frac{5\times 30}{6\times 23}
Multiply \frac{5}{6} times \frac{30}{23} by multiplying numerator times numerator and denominator times denominator.
\frac{150}{138}
Do the multiplications in the fraction \frac{5\times 30}{6\times 23}.
\frac{25}{23}
Reduce the fraction \frac{150}{138} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}