Evaluate
\frac{3349}{3240}\approx 1.033641975
Factor
\frac{17 \cdot 197}{2 ^ {3} \cdot 3 ^ {4} \cdot 5} = 1\frac{109}{3240} = 1.0336419753086419
Share
Copied to clipboard
\frac{\left(\frac{4}{12}+\frac{3}{12}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{\left(\frac{4+3}{12}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{7}{12}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Add 4 and 3 to get 7.
\frac{\left(\frac{35}{60}+\frac{12}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Least common multiple of 12 and 5 is 60. Convert \frac{7}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{\left(\frac{35+12}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Since \frac{35}{60} and \frac{12}{60} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{47}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Add 35 and 12 to get 47.
\frac{\left(\frac{47}{60}+\frac{10}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Least common multiple of 60 and 6 is 60. Convert \frac{47}{60} and \frac{1}{6} to fractions with denominator 60.
\frac{\left(\frac{47+10}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Since \frac{47}{60} and \frac{10}{60} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{57}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Add 47 and 10 to get 57.
\frac{\left(\frac{19}{20}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Reduce the fraction \frac{57}{60} to lowest terms by extracting and canceling out 3.
\frac{\left(\frac{133}{140}+\frac{20}{140}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Least common multiple of 20 and 7 is 140. Convert \frac{19}{20} and \frac{1}{7} to fractions with denominator 140.
\frac{\left(\frac{133+20}{140}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Since \frac{133}{140} and \frac{20}{140} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{153}{140}+\frac{1}{8}+\frac{1}{9}\right)\times 7}{9}
Add 133 and 20 to get 153.
\frac{\left(\frac{306}{280}+\frac{35}{280}+\frac{1}{9}\right)\times 7}{9}
Least common multiple of 140 and 8 is 280. Convert \frac{153}{140} and \frac{1}{8} to fractions with denominator 280.
\frac{\left(\frac{306+35}{280}+\frac{1}{9}\right)\times 7}{9}
Since \frac{306}{280} and \frac{35}{280} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{341}{280}+\frac{1}{9}\right)\times 7}{9}
Add 306 and 35 to get 341.
\frac{\left(\frac{3069}{2520}+\frac{280}{2520}\right)\times 7}{9}
Least common multiple of 280 and 9 is 2520. Convert \frac{341}{280} and \frac{1}{9} to fractions with denominator 2520.
\frac{\frac{3069+280}{2520}\times 7}{9}
Since \frac{3069}{2520} and \frac{280}{2520} have the same denominator, add them by adding their numerators.
\frac{\frac{3349}{2520}\times 7}{9}
Add 3069 and 280 to get 3349.
\frac{\frac{3349\times 7}{2520}}{9}
Express \frac{3349}{2520}\times 7 as a single fraction.
\frac{\frac{23443}{2520}}{9}
Multiply 3349 and 7 to get 23443.
\frac{\frac{3349}{360}}{9}
Reduce the fraction \frac{23443}{2520} to lowest terms by extracting and canceling out 7.
\frac{3349}{360\times 9}
Express \frac{\frac{3349}{360}}{9} as a single fraction.
\frac{3349}{3240}
Multiply 360 and 9 to get 3240.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}