Evaluate
-\frac{25}{6}\approx -4.166666667
Factor
-\frac{25}{6} = -4\frac{1}{6} = -4.166666666666667
Share
Copied to clipboard
\left(\frac{2}{4}-\frac{3}{4}+\frac{7}{8}\right)\times \frac{4}{3}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\left(\frac{2-3}{4}+\frac{7}{8}\right)\times \frac{4}{3}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Since \frac{2}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\left(-\frac{1}{4}+\frac{7}{8}\right)\times \frac{4}{3}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Subtract 3 from 2 to get -1.
\left(-\frac{2}{8}+\frac{7}{8}\right)\times \frac{4}{3}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Least common multiple of 4 and 8 is 8. Convert -\frac{1}{4} and \frac{7}{8} to fractions with denominator 8.
\frac{-2+7}{8}\times \frac{4}{3}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Since -\frac{2}{8} and \frac{7}{8} have the same denominator, add them by adding their numerators.
\frac{5}{8}\times \frac{4}{3}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Add -2 and 7 to get 5.
\frac{5\times 4}{8\times 3}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Multiply \frac{5}{8} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{20}{24}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Do the multiplications in the fraction \frac{5\times 4}{8\times 3}.
\frac{5}{6}+5\lfloor \frac{2}{5}-\frac{2}{5}\times \frac{10}{3}\rfloor
Reduce the fraction \frac{20}{24} to lowest terms by extracting and canceling out 4.
\frac{5}{6}+5\lfloor \frac{2}{5}-\frac{2\times 10}{5\times 3}\rfloor
Multiply \frac{2}{5} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}+5\lfloor \frac{2}{5}-\frac{20}{15}\rfloor
Do the multiplications in the fraction \frac{2\times 10}{5\times 3}.
\frac{5}{6}+5\lfloor \frac{2}{5}-\frac{4}{3}\rfloor
Reduce the fraction \frac{20}{15} to lowest terms by extracting and canceling out 5.
\frac{5}{6}+5\lfloor \frac{6}{15}-\frac{20}{15}\rfloor
Least common multiple of 5 and 3 is 15. Convert \frac{2}{5} and \frac{4}{3} to fractions with denominator 15.
\frac{5}{6}+5\lfloor \frac{6-20}{15}\rfloor
Since \frac{6}{15} and \frac{20}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}+5\lfloor -\frac{14}{15}\rfloor
Subtract 20 from 6 to get -14.
\frac{5}{6}+5\lfloor -1+\frac{1}{15}\rfloor
Dividing -14 by 15 gives -1 and remainder 1. Rewrite -\frac{14}{15} as -1+\frac{1}{15}.
\frac{5}{6}+5\left(-1\right)
The floor of a real number a is the largest integer number less than or equal to a. The floor of -1+\frac{1}{15} is -1.
\frac{5}{6}-5
Multiply 5 and -1 to get -5.
\frac{5}{6}-\frac{30}{6}
Convert 5 to fraction \frac{30}{6}.
\frac{5-30}{6}
Since \frac{5}{6} and \frac{30}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{25}{6}
Subtract 30 from 5 to get -25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}