Verify
false
Share
Copied to clipboard
\frac{\frac{5}{10}+\frac{4}{10}}{\frac{3}{4}-\frac{1}{5}}=\frac{3}{7}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{2}{5} to fractions with denominator 10.
\frac{\frac{5+4}{10}}{\frac{3}{4}-\frac{1}{5}}=\frac{3}{7}
Since \frac{5}{10} and \frac{4}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{10}}{\frac{3}{4}-\frac{1}{5}}=\frac{3}{7}
Add 5 and 4 to get 9.
\frac{\frac{9}{10}}{\frac{15}{20}-\frac{4}{20}}=\frac{3}{7}
Least common multiple of 4 and 5 is 20. Convert \frac{3}{4} and \frac{1}{5} to fractions with denominator 20.
\frac{\frac{9}{10}}{\frac{15-4}{20}}=\frac{3}{7}
Since \frac{15}{20} and \frac{4}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{10}}{\frac{11}{20}}=\frac{3}{7}
Subtract 4 from 15 to get 11.
\frac{9}{10}\times \frac{20}{11}=\frac{3}{7}
Divide \frac{9}{10} by \frac{11}{20} by multiplying \frac{9}{10} by the reciprocal of \frac{11}{20}.
\frac{9\times 20}{10\times 11}=\frac{3}{7}
Multiply \frac{9}{10} times \frac{20}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{180}{110}=\frac{3}{7}
Do the multiplications in the fraction \frac{9\times 20}{10\times 11}.
\frac{18}{11}=\frac{3}{7}
Reduce the fraction \frac{180}{110} to lowest terms by extracting and canceling out 10.
\frac{126}{77}=\frac{33}{77}
Least common multiple of 11 and 7 is 77. Convert \frac{18}{11} and \frac{3}{7} to fractions with denominator 77.
\text{false}
Compare \frac{126}{77} and \frac{33}{77}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}