Evaluate
-\frac{3x^{2}}{4}+50
Expand
-\frac{3x^{2}}{4}+50
Graph
Share
Copied to clipboard
\frac{1\times 3}{2\times 2}\left(10-x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}\left(10-x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\left(\frac{3}{4}\times 10+\frac{3}{4}\left(-1\right)x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Use the distributive property to multiply \frac{3}{4} by 10-x.
\left(\frac{3\times 10}{4}+\frac{3}{4}\left(-1\right)x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Express \frac{3}{4}\times 10 as a single fraction.
\left(\frac{30}{4}+\frac{3}{4}\left(-1\right)x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Multiply 3 and 10 to get 30.
\left(\frac{15}{2}+\frac{3}{4}\left(-1\right)x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
\left(\frac{15}{2}-\frac{3}{4}x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Multiply \frac{3}{4} and -1 to get -\frac{3}{4}.
\frac{15}{2}x-\frac{3}{4}xx+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Use the distributive property to multiply \frac{15}{2}-\frac{3}{4}x by x.
\frac{15}{2}x-\frac{3}{4}x^{2}+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Multiply x and x to get x^{2}.
\frac{15}{2}x-\frac{3}{4}x^{2}+\frac{10}{2}\left(10-\frac{3}{2}x\right)
Multiply \frac{1}{2} and 10 to get \frac{10}{2}.
\frac{15}{2}x-\frac{3}{4}x^{2}+5\left(10-\frac{3}{2}x\right)
Divide 10 by 2 to get 5.
\frac{15}{2}x-\frac{3}{4}x^{2}+50+5\left(-\frac{3}{2}\right)x
Use the distributive property to multiply 5 by 10-\frac{3}{2}x.
\frac{15}{2}x-\frac{3}{4}x^{2}+50+\frac{5\left(-3\right)}{2}x
Express 5\left(-\frac{3}{2}\right) as a single fraction.
\frac{15}{2}x-\frac{3}{4}x^{2}+50+\frac{-15}{2}x
Multiply 5 and -3 to get -15.
\frac{15}{2}x-\frac{3}{4}x^{2}+50-\frac{15}{2}x
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
-\frac{3}{4}x^{2}+50
Combine \frac{15}{2}x and -\frac{15}{2}x to get 0.
\frac{1\times 3}{2\times 2}\left(10-x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}\left(10-x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\left(\frac{3}{4}\times 10+\frac{3}{4}\left(-1\right)x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Use the distributive property to multiply \frac{3}{4} by 10-x.
\left(\frac{3\times 10}{4}+\frac{3}{4}\left(-1\right)x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Express \frac{3}{4}\times 10 as a single fraction.
\left(\frac{30}{4}+\frac{3}{4}\left(-1\right)x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Multiply 3 and 10 to get 30.
\left(\frac{15}{2}+\frac{3}{4}\left(-1\right)x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
\left(\frac{15}{2}-\frac{3}{4}x\right)x+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Multiply \frac{3}{4} and -1 to get -\frac{3}{4}.
\frac{15}{2}x-\frac{3}{4}xx+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Use the distributive property to multiply \frac{15}{2}-\frac{3}{4}x by x.
\frac{15}{2}x-\frac{3}{4}x^{2}+\frac{1}{2}\times 10\left(10-\frac{3}{2}x\right)
Multiply x and x to get x^{2}.
\frac{15}{2}x-\frac{3}{4}x^{2}+\frac{10}{2}\left(10-\frac{3}{2}x\right)
Multiply \frac{1}{2} and 10 to get \frac{10}{2}.
\frac{15}{2}x-\frac{3}{4}x^{2}+5\left(10-\frac{3}{2}x\right)
Divide 10 by 2 to get 5.
\frac{15}{2}x-\frac{3}{4}x^{2}+50+5\left(-\frac{3}{2}\right)x
Use the distributive property to multiply 5 by 10-\frac{3}{2}x.
\frac{15}{2}x-\frac{3}{4}x^{2}+50+\frac{5\left(-3\right)}{2}x
Express 5\left(-\frac{3}{2}\right) as a single fraction.
\frac{15}{2}x-\frac{3}{4}x^{2}+50+\frac{-15}{2}x
Multiply 5 and -3 to get -15.
\frac{15}{2}x-\frac{3}{4}x^{2}+50-\frac{15}{2}x
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
-\frac{3}{4}x^{2}+50
Combine \frac{15}{2}x and -\frac{15}{2}x to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}