Evaluate
\frac{720}{1771}\approx 0.406549972
Factor
\frac{2 ^ {4} \cdot 3 ^ {2} \cdot 5}{7 \cdot 11 \cdot 23} = 0.40654997176736307
Share
Copied to clipboard
\frac{\frac{7}{77}-\frac{33}{77}+\frac{14}{23}}{\frac{2}{3}}
Least common multiple of 11 and 7 is 77. Convert \frac{1}{11} and \frac{3}{7} to fractions with denominator 77.
\frac{\frac{7-33}{77}+\frac{14}{23}}{\frac{2}{3}}
Since \frac{7}{77} and \frac{33}{77} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{26}{77}+\frac{14}{23}}{\frac{2}{3}}
Subtract 33 from 7 to get -26.
\frac{-\frac{598}{1771}+\frac{1078}{1771}}{\frac{2}{3}}
Least common multiple of 77 and 23 is 1771. Convert -\frac{26}{77} and \frac{14}{23} to fractions with denominator 1771.
\frac{\frac{-598+1078}{1771}}{\frac{2}{3}}
Since -\frac{598}{1771} and \frac{1078}{1771} have the same denominator, add them by adding their numerators.
\frac{\frac{480}{1771}}{\frac{2}{3}}
Add -598 and 1078 to get 480.
\frac{480}{1771}\times \frac{3}{2}
Divide \frac{480}{1771} by \frac{2}{3} by multiplying \frac{480}{1771} by the reciprocal of \frac{2}{3}.
\frac{480\times 3}{1771\times 2}
Multiply \frac{480}{1771} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1440}{3542}
Do the multiplications in the fraction \frac{480\times 3}{1771\times 2}.
\frac{720}{1771}
Reduce the fraction \frac{1440}{3542} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}