Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{1}{\sqrt{x}+\sqrt{y}}x^{4}\times \frac{1}{\sqrt{x}-\sqrt{y}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{x^{4}}{\sqrt{x}+\sqrt{y}}\times \frac{1}{\sqrt{x}-\sqrt{y}}
Express \frac{1}{\sqrt{x}+\sqrt{y}}x^{4} as a single fraction.
\frac{x^{4}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}
Multiply \frac{x^{4}}{\sqrt{x}+\sqrt{y}} times \frac{1}{\sqrt{x}-\sqrt{y}} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{4}}{\left(\sqrt{x}\right)^{2}-\left(\sqrt{y}\right)^{2}}
Consider \left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{4}}{x-\left(\sqrt{y}\right)^{2}}
Calculate \sqrt{x} to the power of 2 and get x.
\frac{x^{4}}{x-y}
Calculate \sqrt{y} to the power of 2 and get y.