Evaluate
\frac{2\left(x^{2}-xy+y^{2}\right)}{x^{2}-y^{2}}
Expand
-\frac{2\left(x^{2}-xy+y^{2}\right)}{y^{2}-x^{2}}
Share
Copied to clipboard
\left(\frac{-2}{-2+1}+\frac{2xy}{x^{2}-2xy+y^{2}}\right)\left(\frac{2x}{x+y}-1\right)
The opposite of -1 is 1.
\left(\frac{-2}{-1}+\frac{2xy}{x^{2}-2xy+y^{2}}\right)\left(\frac{2x}{x+y}-1\right)
Add -2 and 1 to get -1.
\left(2+\frac{2xy}{x^{2}-2xy+y^{2}}\right)\left(\frac{2x}{x+y}-1\right)
Fraction \frac{-2}{-1} can be simplified to 2 by removing the negative sign from both the numerator and the denominator.
\left(2+\frac{2xy}{\left(x-y\right)^{2}}\right)\left(\frac{2x}{x+y}-1\right)
Factor x^{2}-2xy+y^{2}.
\left(\frac{2\left(x-y\right)^{2}}{\left(x-y\right)^{2}}+\frac{2xy}{\left(x-y\right)^{2}}\right)\left(\frac{2x}{x+y}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(x-y\right)^{2}}{\left(x-y\right)^{2}}.
\frac{2\left(x-y\right)^{2}+2xy}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Since \frac{2\left(x-y\right)^{2}}{\left(x-y\right)^{2}} and \frac{2xy}{\left(x-y\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-4xy+2y^{2}+2xy}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Do the multiplications in 2\left(x-y\right)^{2}+2xy.
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Combine like terms in 2x^{2}-4xy+2y^{2}+2xy.
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-\frac{x+y}{x+y}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+y}{x+y}.
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\times \frac{2x-\left(x+y\right)}{x+y}
Since \frac{2x}{x+y} and \frac{x+y}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\times \frac{2x-x-y}{x+y}
Do the multiplications in 2x-\left(x+y\right).
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\times \frac{x-y}{x+y}
Combine like terms in 2x-x-y.
\frac{\left(2x^{2}+2y^{2}-2xy\right)\left(x-y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
Multiply \frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}} times \frac{x-y}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{2x^{2}-2xy+2y^{2}}{\left(x+y\right)\left(x-y\right)}
Cancel out x-y in both numerator and denominator.
\frac{2x^{2}-2xy+2y^{2}}{x^{2}-y^{2}}
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{-2}{-2+1}+\frac{2xy}{x^{2}-2xy+y^{2}}\right)\left(\frac{2x}{x+y}-1\right)
The opposite of -1 is 1.
\left(\frac{-2}{-1}+\frac{2xy}{x^{2}-2xy+y^{2}}\right)\left(\frac{2x}{x+y}-1\right)
Add -2 and 1 to get -1.
\left(2+\frac{2xy}{x^{2}-2xy+y^{2}}\right)\left(\frac{2x}{x+y}-1\right)
Fraction \frac{-2}{-1} can be simplified to 2 by removing the negative sign from both the numerator and the denominator.
\left(2+\frac{2xy}{\left(x-y\right)^{2}}\right)\left(\frac{2x}{x+y}-1\right)
Factor x^{2}-2xy+y^{2}.
\left(\frac{2\left(x-y\right)^{2}}{\left(x-y\right)^{2}}+\frac{2xy}{\left(x-y\right)^{2}}\right)\left(\frac{2x}{x+y}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(x-y\right)^{2}}{\left(x-y\right)^{2}}.
\frac{2\left(x-y\right)^{2}+2xy}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Since \frac{2\left(x-y\right)^{2}}{\left(x-y\right)^{2}} and \frac{2xy}{\left(x-y\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-4xy+2y^{2}+2xy}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Do the multiplications in 2\left(x-y\right)^{2}+2xy.
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Combine like terms in 2x^{2}-4xy+2y^{2}+2xy.
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-\frac{x+y}{x+y}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+y}{x+y}.
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\times \frac{2x-\left(x+y\right)}{x+y}
Since \frac{2x}{x+y} and \frac{x+y}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\times \frac{2x-x-y}{x+y}
Do the multiplications in 2x-\left(x+y\right).
\frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}}\times \frac{x-y}{x+y}
Combine like terms in 2x-x-y.
\frac{\left(2x^{2}+2y^{2}-2xy\right)\left(x-y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
Multiply \frac{2x^{2}+2y^{2}-2xy}{\left(x-y\right)^{2}} times \frac{x-y}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{2x^{2}-2xy+2y^{2}}{\left(x+y\right)\left(x-y\right)}
Cancel out x-y in both numerator and denominator.
\frac{2x^{2}-2xy+2y^{2}}{x^{2}-y^{2}}
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}