Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\left(\frac{\sqrt{14}}{2}+2-\frac{33}{16}\right)^{2}
Multiply \frac{\sqrt{14}}{2}+2-\frac{33}{16} and \frac{\sqrt{14}}{2}+2-\frac{33}{16} to get \left(\frac{\sqrt{14}}{2}+2-\frac{33}{16}\right)^{2}.
\left(\frac{\sqrt{14}}{2}+\frac{32}{16}-\frac{33}{16}\right)^{2}
Convert 2 to fraction \frac{32}{16}.
\left(\frac{\sqrt{14}}{2}+\frac{32-33}{16}\right)^{2}
Since \frac{32}{16} and \frac{33}{16} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{\sqrt{14}}{2}-\frac{1}{16}\right)^{2}
Subtract 33 from 32 to get -1.
\left(\frac{8\sqrt{14}}{16}-\frac{1}{16}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 16 is 16. Multiply \frac{\sqrt{14}}{2} times \frac{8}{8}.
\left(\frac{8\sqrt{14}-1}{16}\right)^{2}
Since \frac{8\sqrt{14}}{16} and \frac{1}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(8\sqrt{14}-1\right)^{2}}{16^{2}}
To raise \frac{8\sqrt{14}-1}{16} to a power, raise both numerator and denominator to the power and then divide.
\frac{64\left(\sqrt{14}\right)^{2}-16\sqrt{14}+1}{16^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8\sqrt{14}-1\right)^{2}.
\frac{64\times 14-16\sqrt{14}+1}{16^{2}}
The square of \sqrt{14} is 14.
\frac{896-16\sqrt{14}+1}{16^{2}}
Multiply 64 and 14 to get 896.
\frac{897-16\sqrt{14}}{16^{2}}
Add 896 and 1 to get 897.
\frac{897-16\sqrt{14}}{256}
Calculate 16 to the power of 2 and get 256.