Evaluate
\frac{z^{3}}{4}
Differentiate w.r.t. z
\frac{3z^{2}}{4}
Share
Copied to clipboard
\left(z^{1}\right)^{-4}\times \frac{1}{4z^{-7}}
Use the rules of exponents to simplify the expression.
1^{-4}\left(z^{1}\right)^{-4}\times \frac{1}{4}\times \frac{1}{z^{-7}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
1^{-4}\times \frac{1}{4}\left(z^{1}\right)^{-4}\times \frac{1}{z^{-7}}
Use the Commutative Property of Multiplication.
1^{-4}\times \frac{1}{4}z^{-4}z^{-7\left(-1\right)}
To raise a power to another power, multiply the exponents.
1^{-4}\times \frac{1}{4}z^{-4}z^{7}
Multiply -7 times -1.
1^{-4}\times \frac{1}{4}z^{-4+7}
To multiply powers of the same base, add their exponents.
1^{-4}\times \frac{1}{4}z^{3}
Add the exponents -4 and 7.
\frac{1}{4}z^{3}
Raise 4 to the power -1.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{1}{4}z^{-4-\left(-7\right)})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{1}{4}z^{3})
Do the arithmetic.
3\times \frac{1}{4}z^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{3}{4}z^{2}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}