Skip to main content
Differentiate w.r.t. z
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}z}(\left(\frac{\sqrt{z}}{64z^{-6}}\right)^{\frac{1}{6}})
Cancel out y in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}z}(\left(\frac{z^{\frac{13}{2}}}{64}\right)^{\frac{1}{6}})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{\left(z^{\frac{13}{2}}\right)^{\frac{1}{6}}}{64^{\frac{1}{6}}})
To raise \frac{z^{\frac{13}{2}}}{64} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{z^{\frac{13}{12}}}{64^{\frac{1}{6}}})
To raise a power to another power, multiply the exponents. Multiply \frac{13}{2} and \frac{1}{6} to get \frac{13}{12}.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{z^{\frac{13}{12}}}{2})
Calculate 64 to the power of \frac{1}{6} and get 2.
\frac{13}{12}\times \frac{1}{2}z^{\frac{13}{12}-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{13}{24}z^{\frac{13}{12}-1}
Multiply \frac{13}{12} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{13}{24}\sqrt[12]{z}
Subtract 1 from \frac{13}{12}.