Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{3y}{6}+\frac{7\times 2}{6}\right)^{3}-\left(-\frac{1}{2}-\frac{7}{3}\right)^{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{y}{2} times \frac{3}{3}. Multiply \frac{7}{3} times \frac{2}{2}.
\left(\frac{3y+7\times 2}{6}\right)^{3}-\left(-\frac{1}{2}-\frac{7}{3}\right)^{3}
Since \frac{3y}{6} and \frac{7\times 2}{6} have the same denominator, add them by adding their numerators.
\left(\frac{3y+14}{6}\right)^{3}-\left(-\frac{1}{2}-\frac{7}{3}\right)^{3}
Do the multiplications in 3y+7\times 2.
\frac{\left(3y+14\right)^{3}}{6^{3}}-\left(-\frac{1}{2}-\frac{7}{3}\right)^{3}
To raise \frac{3y+14}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3y+14\right)^{3}}{6^{3}}-\left(-\frac{17}{6}\right)^{3}
Subtract \frac{7}{3} from -\frac{1}{2} to get -\frac{17}{6}.
\frac{\left(3y+14\right)^{3}}{6^{3}}-\left(-\frac{4913}{216}\right)
Calculate -\frac{17}{6} to the power of 3 and get -\frac{4913}{216}.
\frac{\left(3y+14\right)^{3}}{6^{3}}+\frac{4913}{216}
The opposite of -\frac{4913}{216} is \frac{4913}{216}.
\frac{\left(3y+14\right)^{3}}{216}+\frac{4913}{216}
To add or subtract expressions, expand them to make their denominators the same. Expand 6^{3}.
\frac{\left(3y+14\right)^{3}+4913}{216}
Since \frac{\left(3y+14\right)^{3}}{216} and \frac{4913}{216} have the same denominator, add them by adding their numerators.
\frac{\left(3y\right)^{3}+3\times \left(3y\right)^{2}\times 14+3\times 3y\times 14^{2}+14^{3}+4913}{216}
Do the multiplications in \left(3y+14\right)^{3}+4913.
\frac{27y^{3}+378y^{2}+1764y+7657}{216}
Combine like terms in \left(3y\right)^{3}+3\times \left(3y\right)^{2}\times 14+3\times 3y\times 14^{2}+14^{3}+4913.
\left(\frac{3y}{6}+\frac{7\times 2}{6}\right)^{3}-\left(-\frac{1}{2}-\frac{7}{3}\right)^{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{y}{2} times \frac{3}{3}. Multiply \frac{7}{3} times \frac{2}{2}.
\left(\frac{3y+7\times 2}{6}\right)^{3}-\left(-\frac{1}{2}-\frac{7}{3}\right)^{3}
Since \frac{3y}{6} and \frac{7\times 2}{6} have the same denominator, add them by adding their numerators.
\left(\frac{3y+14}{6}\right)^{3}-\left(-\frac{1}{2}-\frac{7}{3}\right)^{3}
Do the multiplications in 3y+7\times 2.
\frac{\left(3y+14\right)^{3}}{6^{3}}-\left(-\frac{1}{2}-\frac{7}{3}\right)^{3}
To raise \frac{3y+14}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3y+14\right)^{3}}{6^{3}}-\left(-\frac{17}{6}\right)^{3}
Subtract \frac{7}{3} from -\frac{1}{2} to get -\frac{17}{6}.
\frac{\left(3y+14\right)^{3}}{6^{3}}-\left(-\frac{4913}{216}\right)
Calculate -\frac{17}{6} to the power of 3 and get -\frac{4913}{216}.
\frac{\left(3y+14\right)^{3}}{6^{3}}+\frac{4913}{216}
The opposite of -\frac{4913}{216} is \frac{4913}{216}.
\frac{\left(3y+14\right)^{3}}{216}+\frac{4913}{216}
To add or subtract expressions, expand them to make their denominators the same. Expand 6^{3}.
\frac{\left(3y+14\right)^{3}+4913}{216}
Since \frac{\left(3y+14\right)^{3}}{216} and \frac{4913}{216} have the same denominator, add them by adding their numerators.
\frac{\left(3y\right)^{3}+3\times \left(3y\right)^{2}\times 14+3\times 3y\times 14^{2}+14^{3}+4913}{216}
Do the multiplications in \left(3y+14\right)^{3}+4913.
\frac{27y^{3}+378y^{2}+1764y+7657}{216}
Combine like terms in \left(3y\right)^{3}+3\times \left(3y\right)^{2}\times 14+3\times 3y\times 14^{2}+14^{3}+4913.