Evaluate
-\frac{x^{4}}{x^{2}+y^{2}}
Expand
-\frac{x^{4}}{x^{2}+y^{2}}
Share
Copied to clipboard
\frac{\left(\frac{xy}{y+x}-\frac{x\left(y+x\right)}{y+x}\right)\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{y+x}{y+x}.
\frac{\frac{xy-x\left(y+x\right)}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Since \frac{xy}{y+x} and \frac{x\left(y+x\right)}{y+x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{xy-xy-x^{2}}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Do the multiplications in xy-x\left(y+x\right).
\frac{\frac{-x^{2}}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Combine like terms in xy-xy-x^{2}.
\frac{\frac{-x^{2}}{y+x}\left(\frac{x\left(x-y\right)}{x-y}+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-y}{x-y}.
\frac{\frac{-x^{2}}{y+x}\times \frac{x\left(x-y\right)+xy}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Since \frac{x\left(x-y\right)}{x-y} and \frac{xy}{x-y} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}}{y+x}\times \frac{x^{2}-xy+xy}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Do the multiplications in x\left(x-y\right)+xy.
\frac{\frac{-x^{2}}{y+x}\times \frac{x^{2}}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Combine like terms in x^{2}-xy+xy.
\frac{\frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Multiply \frac{-x^{2}}{y+x} times \frac{x^{2}}{x-y} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{2}x^{2}\left(x^{2}-y^{2}\right)}{\left(y+x\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Divide \frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)} by \frac{x^{2}+y^{2}}{x^{2}-y^{2}} by multiplying \frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)} by the reciprocal of \frac{x^{2}+y^{2}}{x^{2}-y^{2}}.
\frac{-\left(x+y\right)\left(x-y\right)\left(x^{2}\right)^{2}}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{-\left(x^{2}\right)^{2}}{x^{2}+y^{2}}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{-x^{4}}{x^{2}+y^{2}}
Expand the expression.
\frac{\left(\frac{xy}{y+x}-\frac{x\left(y+x\right)}{y+x}\right)\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{y+x}{y+x}.
\frac{\frac{xy-x\left(y+x\right)}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Since \frac{xy}{y+x} and \frac{x\left(y+x\right)}{y+x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{xy-xy-x^{2}}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Do the multiplications in xy-x\left(y+x\right).
\frac{\frac{-x^{2}}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Combine like terms in xy-xy-x^{2}.
\frac{\frac{-x^{2}}{y+x}\left(\frac{x\left(x-y\right)}{x-y}+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-y}{x-y}.
\frac{\frac{-x^{2}}{y+x}\times \frac{x\left(x-y\right)+xy}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Since \frac{x\left(x-y\right)}{x-y} and \frac{xy}{x-y} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}}{y+x}\times \frac{x^{2}-xy+xy}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Do the multiplications in x\left(x-y\right)+xy.
\frac{\frac{-x^{2}}{y+x}\times \frac{x^{2}}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Combine like terms in x^{2}-xy+xy.
\frac{\frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Multiply \frac{-x^{2}}{y+x} times \frac{x^{2}}{x-y} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{2}x^{2}\left(x^{2}-y^{2}\right)}{\left(y+x\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Divide \frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)} by \frac{x^{2}+y^{2}}{x^{2}-y^{2}} by multiplying \frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)} by the reciprocal of \frac{x^{2}+y^{2}}{x^{2}-y^{2}}.
\frac{-\left(x+y\right)\left(x-y\right)\left(x^{2}\right)^{2}}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{-\left(x^{2}\right)^{2}}{x^{2}+y^{2}}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{-x^{4}}{x^{2}+y^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}