Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{xy}{y+x}-\frac{x\left(y+x\right)}{y+x}\right)\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{y+x}{y+x}.
\frac{\frac{xy-x\left(y+x\right)}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Since \frac{xy}{y+x} and \frac{x\left(y+x\right)}{y+x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{xy-xy-x^{2}}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Do the multiplications in xy-x\left(y+x\right).
\frac{\frac{-x^{2}}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Combine like terms in xy-xy-x^{2}.
\frac{\frac{-x^{2}}{y+x}\left(\frac{x\left(x-y\right)}{x-y}+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-y}{x-y}.
\frac{\frac{-x^{2}}{y+x}\times \frac{x\left(x-y\right)+xy}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Since \frac{x\left(x-y\right)}{x-y} and \frac{xy}{x-y} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}}{y+x}\times \frac{x^{2}-xy+xy}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Do the multiplications in x\left(x-y\right)+xy.
\frac{\frac{-x^{2}}{y+x}\times \frac{x^{2}}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Combine like terms in x^{2}-xy+xy.
\frac{\frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Multiply \frac{-x^{2}}{y+x} times \frac{x^{2}}{x-y} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{2}x^{2}\left(x^{2}-y^{2}\right)}{\left(y+x\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Divide \frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)} by \frac{x^{2}+y^{2}}{x^{2}-y^{2}} by multiplying \frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)} by the reciprocal of \frac{x^{2}+y^{2}}{x^{2}-y^{2}}.
\frac{-\left(x+y\right)\left(x-y\right)\left(x^{2}\right)^{2}}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{-\left(x^{2}\right)^{2}}{x^{2}+y^{2}}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{-x^{4}}{x^{2}+y^{2}}
Expand the expression.
\frac{\left(\frac{xy}{y+x}-\frac{x\left(y+x\right)}{y+x}\right)\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{y+x}{y+x}.
\frac{\frac{xy-x\left(y+x\right)}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Since \frac{xy}{y+x} and \frac{x\left(y+x\right)}{y+x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{xy-xy-x^{2}}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Do the multiplications in xy-x\left(y+x\right).
\frac{\frac{-x^{2}}{y+x}\left(x+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Combine like terms in xy-xy-x^{2}.
\frac{\frac{-x^{2}}{y+x}\left(\frac{x\left(x-y\right)}{x-y}+\frac{xy}{x-y}\right)}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-y}{x-y}.
\frac{\frac{-x^{2}}{y+x}\times \frac{x\left(x-y\right)+xy}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Since \frac{x\left(x-y\right)}{x-y} and \frac{xy}{x-y} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}}{y+x}\times \frac{x^{2}-xy+xy}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Do the multiplications in x\left(x-y\right)+xy.
\frac{\frac{-x^{2}}{y+x}\times \frac{x^{2}}{x-y}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Combine like terms in x^{2}-xy+xy.
\frac{\frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)}}{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}
Multiply \frac{-x^{2}}{y+x} times \frac{x^{2}}{x-y} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{2}x^{2}\left(x^{2}-y^{2}\right)}{\left(y+x\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Divide \frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)} by \frac{x^{2}+y^{2}}{x^{2}-y^{2}} by multiplying \frac{-x^{2}x^{2}}{\left(y+x\right)\left(x-y\right)} by the reciprocal of \frac{x^{2}+y^{2}}{x^{2}-y^{2}}.
\frac{-\left(x+y\right)\left(x-y\right)\left(x^{2}\right)^{2}}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{-\left(x^{2}\right)^{2}}{x^{2}+y^{2}}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{-x^{4}}{x^{2}+y^{2}}
Expand the expression.