Evaluate
\frac{8y^{9}x^{12}}{27}
Expand
\frac{8y^{9}x^{12}}{27}
Share
Copied to clipboard
\left(\frac{xy\times 4x^{3}y^{2}}{2\times 3}\right)^{3}
Divide \frac{xy}{2} by \frac{3}{4x^{3}y^{2}} by multiplying \frac{xy}{2} by the reciprocal of \frac{3}{4x^{3}y^{2}}.
\left(\frac{2xyy^{2}x^{3}}{3}\right)^{3}
Cancel out 2 in both numerator and denominator.
\left(\frac{2x^{4}yy^{2}}{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(\frac{2x^{4}y^{3}}{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(2x^{4}y^{3}\right)^{3}}{3^{3}}
To raise \frac{2x^{4}y^{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{3}\left(x^{4}\right)^{3}\left(y^{3}\right)^{3}}{3^{3}}
Expand \left(2x^{4}y^{3}\right)^{3}.
\frac{2^{3}x^{12}\left(y^{3}\right)^{3}}{3^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{2^{3}x^{12}y^{9}}{3^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{8x^{12}y^{9}}{3^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{8x^{12}y^{9}}{27}
Calculate 3 to the power of 3 and get 27.
\left(\frac{xy\times 4x^{3}y^{2}}{2\times 3}\right)^{3}
Divide \frac{xy}{2} by \frac{3}{4x^{3}y^{2}} by multiplying \frac{xy}{2} by the reciprocal of \frac{3}{4x^{3}y^{2}}.
\left(\frac{2xyy^{2}x^{3}}{3}\right)^{3}
Cancel out 2 in both numerator and denominator.
\left(\frac{2x^{4}yy^{2}}{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(\frac{2x^{4}y^{3}}{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(2x^{4}y^{3}\right)^{3}}{3^{3}}
To raise \frac{2x^{4}y^{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{3}\left(x^{4}\right)^{3}\left(y^{3}\right)^{3}}{3^{3}}
Expand \left(2x^{4}y^{3}\right)^{3}.
\frac{2^{3}x^{12}\left(y^{3}\right)^{3}}{3^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{2^{3}x^{12}y^{9}}{3^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{8x^{12}y^{9}}{3^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{8x^{12}y^{9}}{27}
Calculate 3 to the power of 3 and get 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}