Evaluate
\frac{xy^{13}}{z^{5}}
Expand
\frac{xy^{13}}{z^{5}}
Share
Copied to clipboard
\frac{\left(\frac{z^{-3}y^{-2}}{z^{-4}xy^{3}}\right)^{-3}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{\left(\frac{y^{-2}z^{1}}{xy^{3}}\right)^{-3}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{z^{1}}{xy^{5}}\right)^{-3}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(\frac{z}{xy^{5}}\right)^{-3}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
Calculate z to the power of 1 and get z.
\frac{\frac{z^{-3}}{\left(xy^{5}\right)^{-3}}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
To raise \frac{z}{xy^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{z^{-3}}{\left(xy^{5}\right)^{-3}}}{\frac{\left(xy\right)^{2}}{\left(z^{-1}\right)^{2}}}
To raise \frac{xy}{z^{-1}} to a power, raise both numerator and denominator to the power and then divide.
\frac{z^{-3}\left(z^{-1}\right)^{2}}{\left(xy^{5}\right)^{-3}\left(xy\right)^{2}}
Divide \frac{z^{-3}}{\left(xy^{5}\right)^{-3}} by \frac{\left(xy\right)^{2}}{\left(z^{-1}\right)^{2}} by multiplying \frac{z^{-3}}{\left(xy^{5}\right)^{-3}} by the reciprocal of \frac{\left(xy\right)^{2}}{\left(z^{-1}\right)^{2}}.
\frac{z^{-3}z^{-2}}{\left(xy^{5}\right)^{-3}\left(xy\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -1 and 2 to get -2.
\frac{z^{-5}}{\left(xy^{5}\right)^{-3}\left(xy\right)^{2}}
To multiply powers of the same base, add their exponents. Add -3 and -2 to get -5.
\frac{z^{-5}}{x^{-3}\left(y^{5}\right)^{-3}\left(xy\right)^{2}}
Expand \left(xy^{5}\right)^{-3}.
\frac{z^{-5}}{x^{-3}y^{-15}\left(xy\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
\frac{z^{-5}}{x^{-3}y^{-15}x^{2}y^{2}}
Expand \left(xy\right)^{2}.
\frac{z^{-5}}{x^{-1}y^{-15}y^{2}}
To multiply powers of the same base, add their exponents. Add -3 and 2 to get -1.
\frac{z^{-5}}{x^{-1}y^{-13}}
To multiply powers of the same base, add their exponents. Add -15 and 2 to get -13.
\frac{\left(\frac{z^{-3}y^{-2}}{z^{-4}xy^{3}}\right)^{-3}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{\left(\frac{y^{-2}z^{1}}{xy^{3}}\right)^{-3}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{z^{1}}{xy^{5}}\right)^{-3}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(\frac{z}{xy^{5}}\right)^{-3}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
Calculate z to the power of 1 and get z.
\frac{\frac{z^{-3}}{\left(xy^{5}\right)^{-3}}}{\left(\frac{xy}{z^{-1}}\right)^{2}}
To raise \frac{z}{xy^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{z^{-3}}{\left(xy^{5}\right)^{-3}}}{\frac{\left(xy\right)^{2}}{\left(z^{-1}\right)^{2}}}
To raise \frac{xy}{z^{-1}} to a power, raise both numerator and denominator to the power and then divide.
\frac{z^{-3}\left(z^{-1}\right)^{2}}{\left(xy^{5}\right)^{-3}\left(xy\right)^{2}}
Divide \frac{z^{-3}}{\left(xy^{5}\right)^{-3}} by \frac{\left(xy\right)^{2}}{\left(z^{-1}\right)^{2}} by multiplying \frac{z^{-3}}{\left(xy^{5}\right)^{-3}} by the reciprocal of \frac{\left(xy\right)^{2}}{\left(z^{-1}\right)^{2}}.
\frac{z^{-3}z^{-2}}{\left(xy^{5}\right)^{-3}\left(xy\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -1 and 2 to get -2.
\frac{z^{-5}}{\left(xy^{5}\right)^{-3}\left(xy\right)^{2}}
To multiply powers of the same base, add their exponents. Add -3 and -2 to get -5.
\frac{z^{-5}}{x^{-3}\left(y^{5}\right)^{-3}\left(xy\right)^{2}}
Expand \left(xy^{5}\right)^{-3}.
\frac{z^{-5}}{x^{-3}y^{-15}\left(xy\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
\frac{z^{-5}}{x^{-3}y^{-15}x^{2}y^{2}}
Expand \left(xy\right)^{2}.
\frac{z^{-5}}{x^{-1}y^{-15}y^{2}}
To multiply powers of the same base, add their exponents. Add -3 and 2 to get -1.
\frac{z^{-5}}{x^{-1}y^{-13}}
To multiply powers of the same base, add their exponents. Add -15 and 2 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}