Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{9\left(x_{2}-25\right)}{25z}\text{, }&z\neq 0\\y\in \mathrm{C}\text{, }&x_{2}=25\text{ and }z=0\end{matrix}\right.
Solve for x_2
x_{2}=-\frac{25yz}{9}+25
Solve for y
\left\{\begin{matrix}y=-\frac{9\left(x_{2}-25\right)}{25z}\text{, }&z\neq 0\\y\in \mathrm{R}\text{, }&x_{2}=25\text{ and }z=0\end{matrix}\right.
Share
Copied to clipboard
9x_{2}+25yz=225
Multiply both sides of the equation by 225, the least common multiple of 25,9.
25yz=225-9x_{2}
Subtract 9x_{2} from both sides.
25zy=225-9x_{2}
The equation is in standard form.
\frac{25zy}{25z}=\frac{225-9x_{2}}{25z}
Divide both sides by 25z.
y=\frac{225-9x_{2}}{25z}
Dividing by 25z undoes the multiplication by 25z.
y=\frac{9\left(25-x_{2}\right)}{25z}
Divide 225-9x_{2} by 25z.
9x_{2}+25yz=225
Multiply both sides of the equation by 225, the least common multiple of 25,9.
9x_{2}=225-25yz
Subtract 25yz from both sides.
\frac{9x_{2}}{9}=\frac{225-25yz}{9}
Divide both sides by 9.
x_{2}=\frac{225-25yz}{9}
Dividing by 9 undoes the multiplication by 9.
x_{2}=-\frac{25yz}{9}+25
Divide 225-25yz by 9.
9x_{2}+25yz=225
Multiply both sides of the equation by 225, the least common multiple of 25,9.
25yz=225-9x_{2}
Subtract 9x_{2} from both sides.
25zy=225-9x_{2}
The equation is in standard form.
\frac{25zy}{25z}=\frac{225-9x_{2}}{25z}
Divide both sides by 25z.
y=\frac{225-9x_{2}}{25z}
Dividing by 25z undoes the multiplication by 25z.
y=\frac{9\left(25-x_{2}\right)}{25z}
Divide 225-9x_{2} by 25z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}