Solve for x
x=-\frac{9-yz}{z-3}
y\neq 3\text{ and }z\neq 3
Solve for y
\left\{\begin{matrix}y=\frac{xz-3x+9}{z}\text{, }&z\neq 3\text{ and }x\neq 3\text{ and }z\neq 0\\y\neq 3\text{, }&x=3\text{ and }z=0\end{matrix}\right.
Share
Copied to clipboard
\left(x-3\right)\left(z-3\right)=z\left(y-3\right)
Multiply both sides of the equation by y-3.
xz-3x-3z+9=z\left(y-3\right)
Use the distributive property to multiply x-3 by z-3.
xz-3x-3z+9=zy-3z
Use the distributive property to multiply z by y-3.
xz-3x+9=zy-3z+3z
Add 3z to both sides.
xz-3x+9=zy
Combine -3z and 3z to get 0.
xz-3x=zy-9
Subtract 9 from both sides.
\left(z-3\right)x=zy-9
Combine all terms containing x.
\left(z-3\right)x=yz-9
The equation is in standard form.
\frac{\left(z-3\right)x}{z-3}=\frac{yz-9}{z-3}
Divide both sides by z-3.
x=\frac{yz-9}{z-3}
Dividing by z-3 undoes the multiplication by z-3.
\left(x-3\right)\left(z-3\right)=z\left(y-3\right)
Variable y cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by y-3.
xz-3x-3z+9=z\left(y-3\right)
Use the distributive property to multiply x-3 by z-3.
xz-3x-3z+9=zy-3z
Use the distributive property to multiply z by y-3.
zy-3z=xz-3x-3z+9
Swap sides so that all variable terms are on the left hand side.
zy=xz-3x-3z+9+3z
Add 3z to both sides.
zy=xz-3x+9
Combine -3z and 3z to get 0.
\frac{zy}{z}=\frac{xz-3x+9}{z}
Divide both sides by z.
y=\frac{xz-3x+9}{z}
Dividing by z undoes the multiplication by z.
y=\frac{xz-3x+9}{z}\text{, }y\neq 3
Variable y cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}