Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x-2}{3\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-36}{32}
Factor 3x+6. Factor x^{2}-4.
\left(\frac{\left(x-2\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-36}{32}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right) and \left(x-2\right)\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x-2}{3\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{1}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}.
\left(\frac{\left(x-2\right)\left(x-2\right)+3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-36}{32}
Since \frac{\left(x-2\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} and \frac{3}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\left(\frac{x^{2}-2x-2x+4+3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-36}{32}
Do the multiplications in \left(x-2\right)\left(x-2\right)+3.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-36}{32}
Combine like terms in x^{2}-2x-2x+4+3.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{3\left(-x+2\right)}\right)\times \frac{9x^{2}-36}{32}
Factor 6-3x.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}\right)\times \frac{9x^{2}-36}{32}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-2\right)\left(x+2\right) and 3\left(-x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x-6}{3\left(-x+2\right)} times \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{x^{2}-4x+7+\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-36}{32}
Since \frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)} and \frac{\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-4x+7-x^{2}-2x+6x+12}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-36}{32}
Do the multiplications in x^{2}-4x+7+\left(x-6\right)\left(-1\right)\left(x+2\right).
\frac{19}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-36}{32}
Combine like terms in x^{2}-4x+7-x^{2}-2x+6x+12.
\frac{19\left(9x^{2}-36\right)}{3\left(x-2\right)\left(x+2\right)\times 32}
Multiply \frac{19}{3\left(x-2\right)\left(x+2\right)} times \frac{9x^{2}-36}{32} by multiplying numerator times numerator and denominator times denominator.
\frac{19\left(9x^{2}-36\right)}{96\left(x-2\right)\left(x+2\right)}
Multiply 3 and 32 to get 96.
\frac{9\times 19\left(x-2\right)\left(x+2\right)}{96\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{3\times 19}{32}
Cancel out 3\left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{57}{32}
Multiply 3 and 19 to get 57.