Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x-1}{\left(x-1\right)\left(2x+5\right)}-\frac{x+1}{3x^{2}+4x+1}\right)\left(6x^{2}+17x+5\right)
Factor the expressions that are not already factored in \frac{x-1}{2x^{2}+3x-5}.
\left(\frac{1}{2x+5}-\frac{x+1}{3x^{2}+4x+1}\right)\left(6x^{2}+17x+5\right)
Cancel out x-1 in both numerator and denominator.
\left(\frac{1}{2x+5}-\frac{x+1}{\left(x+1\right)\left(3x+1\right)}\right)\left(6x^{2}+17x+5\right)
Factor the expressions that are not already factored in \frac{x+1}{3x^{2}+4x+1}.
\left(\frac{1}{2x+5}-\frac{1}{3x+1}\right)\left(6x^{2}+17x+5\right)
Cancel out x+1 in both numerator and denominator.
\left(\frac{3x+1}{\left(2x+5\right)\left(3x+1\right)}-\frac{2x+5}{\left(2x+5\right)\left(3x+1\right)}\right)\left(6x^{2}+17x+5\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+5 and 3x+1 is \left(2x+5\right)\left(3x+1\right). Multiply \frac{1}{2x+5} times \frac{3x+1}{3x+1}. Multiply \frac{1}{3x+1} times \frac{2x+5}{2x+5}.
\frac{3x+1-\left(2x+5\right)}{\left(2x+5\right)\left(3x+1\right)}\left(6x^{2}+17x+5\right)
Since \frac{3x+1}{\left(2x+5\right)\left(3x+1\right)} and \frac{2x+5}{\left(2x+5\right)\left(3x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+1-2x-5}{\left(2x+5\right)\left(3x+1\right)}\left(6x^{2}+17x+5\right)
Do the multiplications in 3x+1-\left(2x+5\right).
\frac{x-4}{\left(2x+5\right)\left(3x+1\right)}\left(6x^{2}+17x+5\right)
Combine like terms in 3x+1-2x-5.
\frac{\left(x-4\right)\left(6x^{2}+17x+5\right)}{\left(2x+5\right)\left(3x+1\right)}
Express \frac{x-4}{\left(2x+5\right)\left(3x+1\right)}\left(6x^{2}+17x+5\right) as a single fraction.
\frac{\left(x-4\right)\left(2x+5\right)\left(3x+1\right)}{\left(2x+5\right)\left(3x+1\right)}
Factor the expressions that are not already factored.
x-4
Cancel out \left(2x+5\right)\left(3x+1\right) in both numerator and denominator.
\left(\frac{x-1}{\left(x-1\right)\left(2x+5\right)}-\frac{x+1}{3x^{2}+4x+1}\right)\left(6x^{2}+17x+5\right)
Factor the expressions that are not already factored in \frac{x-1}{2x^{2}+3x-5}.
\left(\frac{1}{2x+5}-\frac{x+1}{3x^{2}+4x+1}\right)\left(6x^{2}+17x+5\right)
Cancel out x-1 in both numerator and denominator.
\left(\frac{1}{2x+5}-\frac{x+1}{\left(x+1\right)\left(3x+1\right)}\right)\left(6x^{2}+17x+5\right)
Factor the expressions that are not already factored in \frac{x+1}{3x^{2}+4x+1}.
\left(\frac{1}{2x+5}-\frac{1}{3x+1}\right)\left(6x^{2}+17x+5\right)
Cancel out x+1 in both numerator and denominator.
\left(\frac{3x+1}{\left(2x+5\right)\left(3x+1\right)}-\frac{2x+5}{\left(2x+5\right)\left(3x+1\right)}\right)\left(6x^{2}+17x+5\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+5 and 3x+1 is \left(2x+5\right)\left(3x+1\right). Multiply \frac{1}{2x+5} times \frac{3x+1}{3x+1}. Multiply \frac{1}{3x+1} times \frac{2x+5}{2x+5}.
\frac{3x+1-\left(2x+5\right)}{\left(2x+5\right)\left(3x+1\right)}\left(6x^{2}+17x+5\right)
Since \frac{3x+1}{\left(2x+5\right)\left(3x+1\right)} and \frac{2x+5}{\left(2x+5\right)\left(3x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+1-2x-5}{\left(2x+5\right)\left(3x+1\right)}\left(6x^{2}+17x+5\right)
Do the multiplications in 3x+1-\left(2x+5\right).
\frac{x-4}{\left(2x+5\right)\left(3x+1\right)}\left(6x^{2}+17x+5\right)
Combine like terms in 3x+1-2x-5.
\frac{\left(x-4\right)\left(6x^{2}+17x+5\right)}{\left(2x+5\right)\left(3x+1\right)}
Express \frac{x-4}{\left(2x+5\right)\left(3x+1\right)}\left(6x^{2}+17x+5\right) as a single fraction.
\frac{\left(x-4\right)\left(2x+5\right)\left(3x+1\right)}{\left(2x+5\right)\left(3x+1\right)}
Factor the expressions that are not already factored.
x-4
Cancel out \left(2x+5\right)\left(3x+1\right) in both numerator and denominator.